# Topics in Database Theory - Homework 2 

## 1 Algebraic Identities

1. (0 points)
(a) Consider a multi-join query, a.k.a. full conjunctive query:

$$
Q=R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{m}
$$

Assume we compute the query by joining the relations one-at-a-time, in some order $R_{n_{1}}, R_{n_{2}}, \ldots, R_{n_{m}}$ (this is called a left-deep query plan):

$$
\begin{aligned}
\text { Out }_{1}:= & R_{n_{1}} \\
\text { Out }_{2}:= & \text { Out }_{1} \bowtie R_{n_{2}} \\
& \ldots \\
\text { Out }_{m}:= & \text { Out }_{m-1} \bowtie R_{n_{m}}
\end{aligned}
$$

Assume that each relation is reduced w.r.t. the query's output, meaning $R_{i}=R_{i} \ltimes Q$. Find a syntactic condition that ensures that Out ${ }_{i}$ is reduced w.r.t. the query's output:

$$
\forall i=1, m: \quad \mathrm{Out}_{i}=\mathrm{Out}_{i} \ltimes Q
$$

Use algebraic identities of $\bowtie$ and $\ltimes$ to prove that Out ${ }_{i}$ is reduced for all $i$. This will complete the proof of Claim 2 in the lecture notes, proving that Yannakakis' algorithm runs in time $O(\mid$ Input $|+|$ Output $\mid)$.
Hint: you need to use the algebraic identities discussed in class, plus possibly new ones that you need to discover.
(b) Suggested min-research project: use the equality saturation system egg https: //egraphs-good.github.io/ and prove correctness and the runtime of Yannakakis algorithm.

## 2 (Hyper)-Treewidth

2. (0 points)
(a) For each query below indicate whether they are acyclic. (The head variables don't matter for this question and are not shown.)

$$
\begin{aligned}
& Q_{1}=R(X, Y) \wedge S(Y, Z) \wedge T(Z, X) \\
& Q_{2}=R(X, Y, Z) \wedge S(Y, Z, U) \wedge T(Z, U, V) \\
& Q_{3}=A(X, Y, Z) \wedge R(X, Y) \wedge S(Y, Z) \wedge T(Z, X) \\
& Q_{4}=A(X) \wedge B(Y) \wedge C(Z) \wedge R(X, Y) \wedge S(Y, Z) \wedge T(Z, X)
\end{aligned}
$$

(b) Fix a graph $G=(V, E)$. A tree decomposition is a pair $(T, \chi)$ where $T$ is a tree, and $\chi: \operatorname{Nodes}(T) \rightarrow 2^{V}$ such that (a) for every edge $(x, y) \in E$ there exists a tree node $u$ such that both $x$ and $y$ are in $\chi(u)$, and (b) the running intersection property holds: for all $x \in V$, the set $\{u \in \operatorname{Nodes}(T) \mid x \in \chi(u)\}$ is connected. The width of the tree decomposition is $\min _{u}|\chi(u)|$, and the treewidth of $G$ is the smallest width of any tree decomposition of $G$. Answer the following questions.
i. What is the treewidth of a cycle of length $n$ ?
ii. What is the treewidth of an $n \times n$ grid? Node $(i, j)$ is connected to $(i \pm 1, j)$ and to $(i, j \pm 1)$.
iii. What is the treewidth of an $n \times n \times n$ cube? Node $(i, j, k)$ is connected to $(i \pm 1, j, k),(i, j \pm 1, k),(i, j, k \pm 1)$.

## 3 Query Containment

3. (0 points)

All queries below are Boolean conjunctive queries; the quantifiers $\exists$ are dropped to reduce clutter.
(a) Indicate all containment or equivalence relationships between the following queries:

$$
\begin{aligned}
Q_{1} & =R(x, y) \wedge R(z, y) \wedge R(x, u) \\
Q_{2} & =R(x, y) \wedge R(y, z) \wedge R(z, u) \\
Q_{3} & =R(x, y) \wedge R(y, z) \wedge R(z, x) \\
Q_{4} & =R(x, y)
\end{aligned}
$$

(b) Indicate all containment or equivalence relationships between the following queries:

$$
\begin{aligned}
& Q_{1}=R(x, y) \wedge R(y, z) \wedge R(z, x) \\
& Q_{2}=R(x, y) \wedge R(y, z) \wedge R(z, x) \wedge x \geq y \\
& Q_{3}=R(x, y) \wedge R(y, z) \wedge R(z, x) \wedge x \leq y \leq z
\end{aligned}
$$

(c) [1] Prove that $Q_{1} \equiv Q_{2}$ :

$$
\begin{aligned}
& Q_{1}=R\left(x_{1}, x_{2}\right) \wedge R\left(x_{2}, x_{3}\right) \wedge R\left(x_{3}, x_{4}\right) \wedge R\left(x_{4}, x_{5}\right) \wedge R\left(x_{5}, x_{1}\right) \wedge x_{1} \neq x_{2} \\
& Q_{2}=R\left(x_{1}, x_{2}\right) \wedge R\left(x_{2}, x_{3}\right) \wedge R\left(x_{3}, x_{4}\right) \wedge R\left(x_{4}, x_{5}\right) \wedge R\left(x_{5}, x_{1}\right) \wedge x_{1} \neq x_{3}
\end{aligned}
$$

## References

[1] Y. Amsterdamer, D. Deutch, T. Milo, and V. Tannen. On provenance minimization. In M. Lenzerini and T. Schwentick, editors, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 141-152. ACM, 2011.

