Topics in Database Theory - Homework 3

1 The AGM Bound

1. (0 points)
(a) Consider the following query:

$$
Q(x, y, z, u, v, w)=R(x, y) \wedge S(y, z) \wedge T(y, u) \wedge K(u, v) \wedge M(x, w)
$$

Assume that $|R|=|S|=|T|=|K|=|M| \leq N$.
i. Find the maximum size of the output to the query Q
ii. Find a worst-case database instance where the query Q has the bound you found above.
(b) Consider the query:

$$
Q(x, y, z, u)=R(x, y) \wedge S(y, z) \wedge T(z, u) \wedge K(u, x)
$$

Suppose the four relations have cardinalities $N_{1}, N_{2}, N_{3}, N_{4}$.
Give a formula that represents a tight upper bound on $|Q|$. Your formula should use the cardinalities $N_{1}, N_{2}, N_{3}, N_{4}$ and operations like,$+ \times, /{ }^{\wedge}$, max, for example $\max \left(N_{1} / N_{2}, N_{3}^{3 / 2}+N_{4}\right)($ not a real answer).
(c) Consider the same query as above, and repeat your answer for the case when y is a key in S :

$$
Q(x, y, z, u)=R(x, y) \wedge S(\underline{y}, z) \wedge T(z, u) \wedge K(u, x)
$$

2 Information Inequalities

2. (0 points)
(a) Let Y, Z be two finites sets. Prove that

$$
|Y|^{2}+|Z|^{2} \leq|Y \cup Z|^{2}+|Y \cap Z|^{2}
$$

and that equality holds iff $Y \subseteq Z$ or $Z \subseteq Y$. (We used this property when we proved the generalized Shearer inequality.)
(b) Consider the following query:

$$
Q(x, y, z, u)=R(x, y, z) \wedge S(y, z, u) \wedge T(z, u, x) \wedge K(u, x, y)
$$

Prove that the following inequalities hold:

$$
\begin{aligned}
& |Q| \leq(|R| \cdot|S| \cdot|T| \cdot|K|)^{1 / 3} \\
& |Q| \leq|R| \cdot \max \left(\operatorname{deg}_{S}(u \mid y z)\right) \\
& |Q| \leq|T| \cdot \max \left(\operatorname{deg}_{K}(y \mid u x)\right)
\end{aligned}
$$

(c) Consider the following query:

$$
\begin{aligned}
Q(x, y, z, u, v, w) & =R(x, y, z) \wedge S(z, u, v) \wedge T(v, w, x) \\
& \wedge A(y, z, u) \wedge B(u, v, w) \wedge C(w, x, y)
\end{aligned}
$$

Prove the following inequality:

$$
|Q| \leq \sqrt{|R| \cdot|S| \cdot|T| \cdot \max \left(\operatorname{deg}_{A}(y \mid z u)\right) \cdot \max \left(\operatorname{deg}_{B}(u \mid v w)\right) \cdot \max \left(\operatorname{deg}_{C}(w \mid x y)\right)}
$$

(d) Prove the following inequality:

$$
\begin{aligned}
& h(x y z)+h(z u v)+h(v w x)+h(y u w)+ \\
& h(y \mid x)+h(z \mid y)+h(u \mid z)+h(v \mid u)+h(w \mid v)+h(x \mid w) \geq 3 h(x y z u v w)
\end{aligned}
$$

More details about information inequalities can be found in [1].

References

[1] D. Suciu. Applications of information inequalities to database theory problems. In LICS, pages 1-30, 2023.

