
Topics in Database Theory – Homework 4

1 Proof of the Shannon Inequalities

1. (0 points)

The entropy of a random variable X with N outcomes and probabilities p1, . . . , pN is
defined as the following quantity:

h(X)
def
= −

∑
i=1,N

pi log pi (1)

As usual, this definition extends to joint random variables. For example, if X, Y are
joint random variables, and pij is the probability of the outcome X = i ∧ Y = j, then
the entropies h(XY ), h(X) are derived from (1) as:

h(XY ) =−
∑
i,j

pij log pij

h(X) =−
∑
i

pi∗ log pi∗ where pi∗ =
∑
j

pij

Prove the statements below by using directly the definition (1). Recall that any concave
function φ(x) satisfies Jensen’s inequality: for all x1, . . . , xn in the domain of φ and for
all pi ≥ 0 s.t.

∑
i pi = 1:

∑
i

pi · φ(xi) ≤φ

(∑
i

pi · xi

)
If φ is not a linear function, then equality holds iff all values xi corresponding to non-zero
pi’s are equal, i.e. pi, pj > 0 implies xi = xj.

(a) h(X) ≥ 0

(b) If X has N outcomes, then h(X) ≤ logN . Hint: φ(x) = log x is concave.

(c) Define h(Y |X)
def
= h(XY ) − h(X). Prove that h(Y |X) = Ex[h(Y |X = x)], where

h(Y |X = x) is the entropy of the random variable Y conditioned on the outcome
X = x. Hint: direct calculation.

(d) h(XY ) ≥ h(X). Hint: the solution has one line.
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(e) Prove that h(X) + h(Y ) ≥ h(XY ). Moreover, equality holds iff X, Y are indepen-
dent random variables (denoted as X ⊥ Y ), which means that p(X = x∧Y = y) =
p(X = x)·p(Y = y) for all outcomes (x, y). Hint: show that h(X)+h(Y )−h(XY ) ≥
0 by using Jensen’s inequality for log x.

(f) Prove submodularity: h(XZ) + h(Y Z) ≥ h(XY Z) + h(Z). Hint: 1-2 lines.

2 Polymatroids and Modular Functions

2. (0 points)

A function h : 2[n] → R+ (or, equivalently, a vector h ∈ R2[n]

+ ) is called a polymatroid if
it satisfies Shannon’s basic inequalities:

h(∅) =0 (3)

h(XY ) ≥h(X) here XY denotes X ∪ Y (4)

h(X) + h(Y ) ≥h(X ∪ Y ) + h(X ∩ Y ) (5)

(Note that every entropic vector h is a polymatroid, but the converse is in general not
true: this is a break-through result from [1].)

The function is called modular if h(X) + h(Y ) = h(XY ) whenever X ∩Y = ∅. Equiv-
alently, a modular function is uniquely defined by its values on single variables, h(Xi),
such that:

h(Xi1Xi2 · · ·Xik) =h(Xi1) + · · ·+ h(Xik) (6)

(a) For each function below indicate whether it is modular, or a polymatroid, or neither.
ha :

∅

X

XY

Y

XZ

Z

YZ

XYZ

h=3 h=1 h=5

h=6h=8h=4

h=9

h=0

hb :

∅

X

XY

Y

XZ

Z

YZ

XYZ

h=3 h=1 h=2

h=6h=5h=4

h=5

h=0

hc :

∅

X

XY

Y

XZ

Z

YZ

XYZ

h=1 h=1 h=1

h=1h=1h=1

h=1

h=0

hd :

∅

X

XY

Y

XZ

Z

YZ

XYZ

h=1 h=1 h=1

h=1h=1h=1

h=2

h=0

he :

∅

X

XY

Y

XZ

Z

YZ

XYZ

h=1 h=1 h=1

h=2h=2h=2

h=2

h=0

hf :

∅

X

XY

Y

XZ

Z

YZ

XYZ

h=1 h=1 h=1

h=1h=1h=1

h=0

h=0

(b) Prove that every modular function h is a polymatroid. (Note that h ≥ 0 by defini-
tion).
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(c) Let h be any polymatroid. Fix an order of the n variables, e.g. X1, X2, . . . , Xn.
If i ≤ n then X[i] denotes the set of variables X1X2 . . . Xi. Define the following
function h0 : 2

[n] → R+, which we call the modularization of h:

h0(Xi1 · · ·Xik)
def
=
∑
j=1,k

h(Xij |X[ij−1])

(For example, h0(X2X5) = h(X2|X1) + h(X5|X1X2X3X4).) Prove the following
items (which say that h0 is a modular function, no greater than h, and equal to h
on the set of all variables X[n]):

i. h0 is modular.

ii. For every set U , h0(U ) ≤ h(U). Hint: use the chain rule, which says
h(XY ZU) = h(X) + h(Y |X) + h(Z|XY ) + h(U |XY Z). Also use submod-
ularity: h(Z|X) ≥ h(Z|XY ).

iii. h0(X[n]) = h(X[n]), where X[n] is the set of all n variables.

(d) For each i = 1, n, define the following function h(Xi) : 2[n] → R+:

h(Xi)(U) =

{
1 if Xi ∈ U

0 otherwise

i. Prove that h(Xi) is a modular function. We call it a basic modular function.

ii. Prove that every modular function h is a positive linear combination of the
n basic modular functions, i.e. there exists a1, . . . , an ≥ 0 such that h =∑

i aih
(Xi). For example, the function ha in Question (a) above can be written

as ha = 3h(X) + 1h(Y ) + 5h(Z). (Yes, ha is modular!)

(e) Consider an inequality of the following form:∑
j=1,m

wjh(Uj) ≥h(X) (7)

where X is the set of all variables (same as X[n]), and for each j, wj ≥ 0 and
Uj ⊆ X. Prove that the following are equivalent:

1. The coefficients w1, . . . , wm form a fractional edge cover of the hypergraph with
hyperedges U1, . . . ,Um. In other words, for all i = 1, n,

∑
j:Xi∈Uj

wj ≥ 1.

2. Inequality (7) holds for all modular functions.

3. Inequality (7) holds for all polymatroids.

The inequality (7) corresponds to an AGM bound. What the problem above asks
you to do is to show that in order to prove the AGM bound it suffices to check the
inequality only on modular functions. This explains why the AGM bound is easier
to compute than the general case.

Hint: Prove Item 1 ⇒ Item 2 ⇒ Item 3 ⇒ Item 1 (three proofs). For the first proof,
show Inequality (7) holds for every basic modular function h(Xi) (then it holds for
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any modular function; why?); for the second step, use the modularization function;
for the third step, use the basic modular functions h(Xi) again.

Note: in class we proved that Item 1 implies Item 3. Your solution to this question
provides an alternative, arguably simpler proof, by relying on modular functions.
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