Acyclity and Notions of "Width" of Hypergraphs

Reinhard Pichler
TU Wien

Joint work with several co-authors
(Fischl/Gottlob/Lanzinger/Longo/Okulmus from TU Wien + Razgon from Birkbeck U.)

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
- hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
-hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Three Problems

- BCQ: Boolean Conjunctive Query Evaluation
- CSP: Constraint Satisfaction Problem
- HOM: Homomorphism Problem

All these problems are essentially the same.
All these problems are based on hypergraphs.

HOM: Homomorphism Problem

Given two relational structures

$$
\begin{aligned}
& A=\left(U, R_{1}, R_{2}, \ldots, R_{k}\right) \\
& B=\left(V, S_{1}, S_{2}, \ldots, S_{k}\right)
\end{aligned}
$$

Decide whether there exists a homomorphism h from A to B

$$
\begin{aligned}
& h: U \longrightarrow V \\
& \text { such that } \forall \mathbf{x}, \forall i \\
& \mathbf{x} \in R_{i} \Rightarrow h(\mathbf{x}) \in S_{i}
\end{aligned}
$$

[Feder and Vardi 1993] Relationship to CSP, restrictions on B
[Kolaitis and Vardi 1998] Relationship to Query Containment, restrictions on A, B

CSP: Constraint Satisfaction Problem

Set of variables $V=\left\{X_{1}, \ldots, X_{n}\right\}$, domain D, and set of constraints $\left\{C_{1}, \ldots, C_{m}\right\}$, where: $C_{i}=\left\langle S_{i}, R_{i}\right\rangle$

Solution to the CSP: A substitution $h: V \rightarrow D$ such that $\forall i: h\left(S_{i}\right) \in R_{i}$

BCQ: Boolean Conjunctive Query Evaluation

DATABASE:

QUERY:

Is there any teacher having a child enrolled in her course? ans $\leftarrow \operatorname{Enrolled}(S, C, R) \wedge$ Teaches $(P, C, A) \wedge \operatorname{Parent}(P, S)$

BCQ: Boolean Conjunctive Query Evaluation

DATABASE:

NP-Completeness of HOM

Membership: Obvious, guess h.
Hardness: Reduction from 3COL.

Graph is 3-colourable iff $\operatorname{HOM}(A, B)$ is yes-instance.

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acylicity
- Well-known width notions: tw, hw, ghw, fhw
- hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Hypergraph of a CQ

```
ans \leftarrowEnrolled(S,C,R)^Teaches(P,C,A) ^Parent(P,S)
```

Hypergraph $\mathrm{H}=(\mathrm{V}, \mathrm{E})$:
vertices V : variables of the CQ edges E : atoms of the CQ

Acyclic CQs (ACQs)

QUERY: Is there any teacher having a child enrolled in some course?
ans $\leftarrow \operatorname{Enrolled}\left(S, C^{\prime}, R\right) \wedge \operatorname{Teaches}(P, C, A) \wedge \operatorname{Parent}(P, S)$

Acyclic CQs (ACQs)

QUERY: Is there any teacher having a child enrolled in some course?
ans $\leftarrow \operatorname{Enrolled}\left(S, C^{\prime}, R\right) \wedge \operatorname{Teaches}(P, C, A) \wedge \operatorname{Parent}(P, S)$

Join Tree

Acyclic COs (ACQs)

QUERY: Is there any teacher having a child enrolled in some course?
ans $\leftarrow \operatorname{Enrolled}\left(S, C^{\prime}, R\right) \wedge \operatorname{Teaches}(P, C, A) \wedge \operatorname{Parent}(P, S)$

Properties of a Join Tree:

- Nodes correspond to atoms
- For each query variable V, the tree-nodes containing V span a connected subtree (connectednes condition)

Complexity of CQ Answering

- NP-complete in the general case [Chandra and Merlin 1977]
- Tractable in case of acyclic CQs [Yannakakis 1981] even LOGCFL-complete, thus parallelizable [Gottlob,Leone,Scarcello 1998]

Complexity of CQ Answering

- NP-complete in the general case [Chandra and Merlin 1977]
- Tractable in case of acyclic CQs [Yannakakis 1981] even LOGCFL-complete, thus parallelizable [Gottlob,Leone,Scarcello 1998] Key Idea:
- semi-joins along bottom-up and top-down traversals of the join tree
- joins along another bottom-up traversal of the join tree

Complexity of CQ Answering

- NP-complete in the general case [Chandra and Merlin 1977]
- Tractable in case of acyclic CQs [Yannakakis 1981] even LOGCFL-complete, thus parallelizable [Gottlob,Leone,Scarcello 1998] Key Idea:
- semi-joins along bottom-up and top-down traversals of the join tree
- joins along another bottom-up traversal of the join tree

Time Complexity of CQ evaluation: $O(|Q| \cdot N+|O u t p u t|)$
with $N=\max$ size of the relations

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously, if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously, if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

- Eliminate an atom if it shares no variables with other atoms;
-> This atom can be used as root node of another tree.

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously, if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

- Eliminate an atom if it shares no variables with other atoms;
-> This atom can be used as root node of another tree.
- Eliminate an atom R if there exists a witness R' s.t. each variable in R either appears in R only, or also appears in R^{\prime};
-> R will be appended as child of R^{\prime} in the join tree.

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously, if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

- Eliminate an atom if it shares no variables with other atoms;
-> This atom can be used as root node of another tree.
- Eliminate an atom R if there exists a witness R' s.t. each variable in R either appears in R only, or also appears in R^{\prime};
-> R will be appended as child of R^{\prime} in the join tree.
The query is acyclic iff the GYO-reduction yields the empty set of atoms.

Join Tree

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree

Example

$Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):-$
$R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)$

Join Tree

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree Construction

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
\begin{aligned}
& R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right) \\
& r_{1} \\
& r_{3} \quad r_{4} \\
& r_{5}
\end{aligned}
$$

Join Tree Construction

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
\underset{r_{1}}{R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge r_{1}} \underset{r_{1}}{\left(x_{1}, x_{2}, x_{3}\right)} r_{3} \underset{r_{4}}{R_{2}\left(x_{2}, x_{3}\right)} \wedge R_{2}\left(x_{5}, x_{6}\right)
$$

$$
\mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}
$$

Join Tree Construction

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
\begin{array}{cc}
R_{3}\left(x_{3}\right) & \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \\
r_{1} & r_{2} \\
r_{2}\left(x_{2}, x_{3}\right) \wedge & r_{4} \\
R_{2}\left(x_{5}, x_{6}\right) \\
r_{5}
\end{array}
$$

$$
\begin{aligned}
& \mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
& \mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}
\end{aligned}
$$

Join Tree Construction

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge r_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{3}}{r_{1}} \underset{r_{2}}{R_{2}\left(x_{2}, x_{3}\right)} \wedge \underset{r_{5}}{R_{2}\left(x_{5}, x_{6}\right)}
$$

$$
\begin{aligned}
& \mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
& \mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{2}=\left\{r_{2}, r_{3}, r_{4}\right\}
\end{aligned}
$$

Join Tree Construction

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge r_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{2}}{r_{1}} \underset{r_{2}\left(x_{2}, x_{3}\right)}{r_{4}} \stackrel{R_{2}\left(x_{5}, x_{6}\right)}{r_{5}}
$$

$$
\begin{aligned}
& \mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
& \mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{2}=\left\{r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{3}=\left\{r_{3}, r_{4}\right\}
\end{aligned}
$$

Join Tree Construction

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
\begin{aligned}
& \mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
& \mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{2}=\left\{r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{3}=\left\{r_{3}, r_{4}\right\} \\
& \mathcal{A}_{4}=\left\{r_{4}\right\}
\end{aligned}
$$

Yannakakis' Algorithm

Label each node t in the join tree with the actual relation R_{t} Boolean ACQ:

- Semi-joins in a bottom-up traversal of the join tree

Non-Boolean ACQ:

- Semi-joins in a top-down traversal of the join tree
- Joins in another bottom-up traversal of the join tree

Correctness of Yannakakis' Algorithm

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_{t} be the subtree of T rooted at t, and let R_{t} be the relation at node t; moreover, let $R_{t}^{\prime} / R_{t}^{\prime \prime} / R_{t}^{\prime \prime \prime}$ denote the result of the first / second / third traversal of the join tree:
1 After the $1^{\text {st }}$ bottom-up traversal:

$$
R_{t}^{\prime}=\pi_{\text {vars }(t)}\left(\bowtie_{v \in V\left(T_{t}\right)} R_{v}\right) \text { for each } t \in T
$$

2. After the top-down traversal:

$$
R_{t}^{\prime \prime}=\pi_{\operatorname{vars}(t)}\left(\bowtie_{v \in V(T)} R_{v}\right) \text { for each } t \in T
$$

3 After the $2^{\text {nd }}$ bottom-up traversal:

$$
R_{t}^{\prime \prime \prime}=\pi_{\operatorname{vars}\left(T_{t}\right)}\left(\bowtie_{v \in V(T)} R_{v}\right) \text { for each } t \in T
$$

$$
\Rightarrow R_{r}^{\prime \prime \prime} \text { at root } r \text { contains all results }
$$

How to generalize query acyclicity?

Generalizations of acyclicity come with some notion of width expressing the degree of cyclicity.

Desiderata for a "good" generalization:

- Generalization of Acyclicity:

Queries of width $k \geq 1$ include all acyclic CQs

- Tractable Recognizability:

Width k queries can be recognized efficiently

- Tractable Query Answering:

Width k queries can be answered efficiently

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
-hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

- Variables of each atom covered by some node

$$
B, X^{\prime}, F \quad B^{\prime}, X^{\prime}, F
$$

- Connectedness Condition

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

- Variables of each atom covered by some node

$$
B, X^{\prime}, F \quad B^{\prime}, X^{\prime}, F
$$

- Connectedness Condition

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

- Variables of each atom covered by some node

- Connectedness Condition

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

- Variables of each atom covered by some node

Width of TD: 8

$$
B, X^{\prime}, F \quad B^{\prime}, X^{\prime}, F
$$

- Connectedness Condition

Tree Decomposition

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

- Variables of each atom covered by some node

Width of TD: 8

$$
B, X^{\prime}, F \quad B^{\prime}, X^{\prime}, F
$$

Edge Covers

- Consider a set of vertices $V^{\prime} \subseteq V(H)$
- An edge cover is a set of edges $E^{\prime} \subseteq E(H)$, s.t. all vertices in V^{\prime} are "covered" by E^{\prime}, i.e. $V^{\prime} \subseteq \bigcup_{e \in E^{\prime}} e$
- Add edge covers to the tree decomposition
- Each node p in the decomposition has two "labels":
- $\lambda(p)$: set of edges
- $\chi(p)$: set of vertices

Generalized Hypertree Decompositions

Tree Decompositions + Edge Covers

$$
\begin{aligned}
\text { ans } \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Width of TD: 8
Width of GHD: 2

Generalized Hypertree Decompositions

Tree Decompositions + Edge Covers

$$
\begin{aligned}
a n s \leftarrow & a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge e(Y, Z) \wedge \\
& f\left(F, F^{\prime}, Z^{\prime}\right) \wedge g\left(X^{\prime}, Z^{\prime}\right) \wedge h^{\prime}\left(Y^{\prime}, Z^{\prime}\right) \wedge j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Width of TD: 8
Width of GHD: 2
$\operatorname{ghw}(\mathrm{Q})=$ minimum width over all GHDs of Q

Tractable CQ answering for bounded ghw

- Key Idea: local joins of "edge labels" in the GHD to obtain ACQ
- for ghw = k: joins of up to k relations
- Time complexity of CQ answering if ghw $(\mathrm{Q}) \leq \mathrm{k}$: $O\left(|Q| \cdot|N|^{k}+\mid\right.$ Output $\left.\mid\right)$

Tractable CQ answering for bounded ghw

- Key Idea: local joins of "edge labels" in the GHD to obtain ACQ
- for ghw = k: joins of up to k relations
- Time complexity of CQ answering if ghw $(\mathrm{Q}) \leq \mathrm{k}$:

$$
O\left(|Q| \cdot|N|^{k}+\mid \text { Output } \mid\right)
$$

Compare this with bounded tree width:

- for $\mathrm{tw}=\mathrm{k}$: views of up to $\mathrm{k}+1$ variables
- Time complexity of $C Q$ answering if $t w(Q) \leq k$:
$O\left(|Q| \cdot \mid\right.$ adom $\left.\right|^{k+1}+\mid$ Output $\left.\mid\right)$

Hypertree Decompositions

GHD + Special Condition

Hypertree Decompositions

GHD + Special Condition

Each variable that disappeared at some node \mathbf{n}

Hypertree Decompositions

GHD + Special Condition

Each variable that disappeared at some node \mathbf{n}
does not reappear in the subtree rooted at \mathbf{n}

Hypertree Decompositions

GHD + Special Condition

Each variable that disappeared at some node \mathbf{n}
does not reappear in the subtree rooted at \mathbf{n}

$h w(Q)=$ minimum width over all HDs of Q

Integral vs. Fractional Edge Covers

Integral Edge Covers
Let λ be a function: $E(H) \rightarrow\{\mathbf{0}, \mathbf{1}\}$ then

$$
B(\lambda)=\left\{v \in V(H) \mid \sum_{e \in E(H), v \in e} \lambda(e) \geq 1\right\} .
$$

Fractional Edge Covers
Let γ be a function: $E(H) \rightarrow[0,1]$ then

$$
B(\gamma)=\left\{v \in V(H) \mid \sum_{e \in E(H), v \in e} \gamma(e) \geq 1\right\} .
$$

Fractional Hypertree Decompositions

Tree Decompositions + Fractional Edge Covers

Width of FHD: 2

fhw $(Q)=$ minimum width over all FHDs of Q

Tractable CQ Answering for Bounded Width

Proposition

For every hypergraph $H: f h w(H) \leq g h w(H) \leq h w(H) \leq t w(H)+1$.

Theorem

Answering CQs is tractable for classes of CQs with bounded

- tw [Chekuri and Rajaraman 1997, Kolaitis and Vardi 1998];
- hw, ghw [Gottlob, Leone, and Scarcello 1999], [Adler, Gottlob, and Grohe 2007]
- fhw [Grohe and Marx 2006], [Marx 2010].

Checking Low Width

CHECK $(t w\|h w\| g h w \mid f h w)$ for fixed $k \geq 1$	
input	hypergraph H
output	"yes" if $t w(H)\|h w(H)\| g h w(H) \mid f h w(H) \leq k$
	(and output decomposition of width $\leq k)$
	"no" otherwise

Checking Low Width

CHECK(tw|hw|ghw|fhw) for fixed $k \geq 1$

input	hypergraph H
output	"yes" if $t w(H)\|h w(H)\| g h w(H) \mid f h w(H) \leq k$
	„no" otherwise output decomposition of width $\leq k)$

Complexity of the CHECK-Problem

- tw: tractable (even FPL in k) [Freuder 1990], [Bodlaender 1993]
- $h w$: tractable [Gottlob, Leone, and Scarcello 1999]
- ghw: NP-complete for $\boldsymbol{k} \geq \mathbf{3}$ [Gottlob, Miklos, and Schwentick 2007]
- fhw: NP-complete for $\boldsymbol{k} \geq \mathbf{2}$ [Fischl, Gottlob, and P., 2018]

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
- hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Decomposition

Decomposition

Decomposition

Decomposition

Decomposition

Components

[U]-Compnents

Consider hypergraph H and subset U of the vertices of H :

- Two edges $\mathrm{e}_{1}, \mathrm{e}_{2}$ are [U]-adjacent, if $\left(e_{1} \cap e_{2}\right) \backslash U \neq \emptyset$.
- Define [U]-connectedness as transitive closure of [U]-adjacency.
- $A[U]$-component of H is a maximally [U]-connected subset of $E(H)$.

Components

[U]-Compnents

Consider hypergraph H and subset U of the vertices of H :

- Two edges $\mathrm{e}_{1}, \mathrm{e}_{2}$ are [U]-adjacent, if $\left(e_{1} \cap e_{2}\right) \backslash U \neq \emptyset$.
- Define [U]-connectedness as transitive closure of [U]-adjacency.
- A [U]-component of H is a maximally [U]-connected subset of $E(H)$.

Observation [Gottlob, Leone, and Scarcello 1999]
Given an HD (likewise a GHD) T of width k, we can transform T into an HD (resp. GHD) T' of width $\leq k$, such that for every node p in T^{\prime} we have: each subtree rooted at a child node of p covers exactly one $[\chi(p)]$-component of H.

Tractable Computation of an HD

Idea

Recursive procedure:
Input: a component C of the hypergraph H
the bag at the parent node p in the HD
\{ guess an edge cover $\lambda(c)$ of size $\leq k$ at the child c of $p ;$ determine the bag $\chi(c)$; // subset of $U \lambda(c)$ to ensure connectedness of // $\chi(c)$ with C and all vertices in $\mathrm{C} \cap \cup \lambda(c)$
determine the $[\chi(c)]$-components of H inside C ; recursively call the procedure for every such component \}

Difficulty of Checking Low ghw

Hypertree Decomposition Computation

- Top down construction of decomposition
- Guess $\leq k$ edges
- Bag of nodes fully determined

Vertices disappearing may never appear below

Difficulty of Checking Low ghw

Generalized Hypertree Decomposition Computation

Vertices disappearing may appear below

- Top down construction of decomposition
- Guess $\leq k$ edges
- Question: How to determine bag of variables?
- Problem: (for unbounded arity) There are exponentially many possible subsets of the edge cover

HW vs. GHW

GHD of width 2 [Adler, Gottlob, and Grohe 2007]

HW vs. GHW

violation of the special condition!

HW vs. GHW

1,2,7,8,a,b	$\{1,2, a\},\{7,8, b\}$
\downarrow	
2(3) $6,7, a, b$	$\{2,3$) b \}, $\{6,7, a\}$
\downarrow	
2(3) $5,6, a, b$	$\{1,2, a\},\{2,3 . b\},\{5,6, b\}$
\downarrow	
2(3) $4,5, a, b$	$\{2,3, b\},\{4,5, a\}$

HD of width 3 [Adler, Gottlob, and Grohe 2007]

HW vs. GHW

Theorem [Adler, Gottlob, and Grohe 2007]

For every hypergraph \mathbf{H}, we have $h w(H) \leq 3 \cdot g h w(H)+1$. Hence, a class of hypergraphs has bounded hw iff it has bounded ghw.

HW vs. GHW

Theorem [Adler, Gottlob, and Grohe 2007]

For every hypergraph \mathbf{H}, we have $h w(H) \leq 3 \cdot g h w(H)+1$. Hence, a class of hypergraphs has bounded hw iff it has bounded ghw.

Empirical observation:
the difference between
hw and ghw is much smaller in practice.
[Fischl, Gottlob, Longo, and P. 2019]

$h w \rightarrow g h w$	yes	no	timeout
$3 \rightarrow 2$	0	$309(10)$	1
$4 \rightarrow 3$	0	$262(57)$	124
$5 \rightarrow 4$	0	$148(13)$	279
$6 \rightarrow 5$	$18(129)$	$180(288)$	261

GHW of instances with average runtime in s

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
-hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Tractable Classes

We were looking for restrictions giving large classes for which computing ghw and fhw is tractable, or fhw PTIME approximable (better than k^{3})

Such classes should fullfil the following criteria:

Polynomial-time recognizable

Nontrivial: They should not guarantee tractability of CQ Answering by themselves (e.g. acyclic queries).

Realistic: A large proportion of the existing real-life benchmarks is covered, or some important classes (e.g. bounded arity).

Restrictions for Tractability

A class C of hypergraphs enjoys:
BIP (bounded intersection property): $\exists \mathrm{i} \forall \mathrm{H} \in \mathrm{C}, \forall \mathrm{e}_{1}, \mathrm{e}_{2} \in \mathrm{E}(\mathrm{H}),\left|\mathrm{e}_{1} \cap \mathrm{e}_{2}\right| \leq \mathrm{i}$.
BMIP (bd. multi-intersection prop.): $\exists \mathrm{i} \exists \mathrm{c} \forall \mathrm{H} \in \mathrm{C}, \forall \mathrm{e}_{1} \ldots \mathrm{e}_{\mathrm{c}} \in \mathrm{E}(\mathrm{H}),\left|\mathrm{e}_{1} \cap \ldots \cap \mathrm{e}_{\mathrm{c}}\right| \leq \mathrm{i}$.
BR (bounded rank): $\exists r \forall H \in C \quad \forall e \in E(H),|e| \leq i$.
BD (bounded degree): $\exists \mathrm{d} \forall \mathrm{H} \in \mathrm{C} \forall \mathrm{v} \in \mathrm{V}(\mathrm{H}), \quad|\{\mathrm{e} \in \mathrm{E}(\mathrm{H}) \mid \mathrm{v} \in \mathrm{e}\}| \leq \mathrm{d}$.
BVC (bounded vc-dimension): $\exists \delta \forall \mathrm{H} \in \mathrm{C}$ vc $(\mathrm{H}) \leq \delta$

Restrictions for Tractability

A class C of hypergraphs enjoys:
BIP (bounded intersection property): $\exists \mathrm{i} \forall \mathrm{H} \in \mathrm{C}, \forall \mathrm{e}_{1}, \mathrm{e}_{2} \in \mathrm{E}(\mathrm{H}),\left|\mathrm{e}_{1} \cap \mathrm{e}_{2}\right| \leq \mathrm{i}$.
BMIP (bd. multi-intersection prop.): $\exists \mathrm{i} \exists \mathrm{c} \forall \mathrm{H} \in \mathrm{C}, \forall \mathrm{e}_{1} \ldots \mathrm{e}_{\mathrm{c}} \in \mathrm{E}(\mathrm{H}),\left|\mathrm{e}_{1} \cap \ldots \cap \mathrm{e}_{\mathrm{c}}\right| \leq i$.
BR (bounded rank): $\exists r \forall H \in C \forall e \in E(H),|e| \leq i$.
BD (bounded degree): $\exists \mathrm{d} \forall \mathrm{H} \in \mathrm{C} \forall \mathrm{v} \in \mathrm{V}(\mathrm{H}), \quad|\{\mathrm{e} \in \mathrm{E}(\mathrm{H}) \mid \mathrm{v} \in \mathrm{e}\}| \leq \mathrm{d}$.
BVC (bounded vc-dimension): $\exists \delta \forall \mathrm{H} \in \mathrm{C} \quad \mathrm{vc}(\mathrm{H}) \leq \delta$
Note: $\mathrm{BR} \rightarrow \mathrm{BIP} \rightarrow \mathrm{BMIP} \rightarrow \mathrm{BVC} ; \mathrm{BD} \rightarrow \mathrm{BMIP} ;$ none of the implications reversible.

Results

Problem	GHW=k	FHW=k
Property	tractable (*)	
BIP	tractable	tractable ($\left.^{* *}\right)$
BMIP	tractable	tractable
BR	tractable	tractable
BD	tractable	NP-complete

GHW Computation for Bounded Intersection

Goal: add polynomially many subedges to H so that $\chi(p)=U \lambda(p)$ at each node p of a GHD.

$$
f(H, k)=\bigcup_{e \in \mathrm{E}(H)}\left(\bigcup_{e_{1}, \ldots, e_{j} \in(E(H) \backslash\{e\}), j \leq k} 2^{\left(e n\left(e_{1} \cup \cdots \cup e_{j}\right)\right)}\right)
$$

GHW Computation for Bounded Intersection

Goal: add polynomially many subedges to H so that $\chi(p)=U \lambda(p)$ at each node p of a GHD.

$$
f(H, k)=\bigcup_{e \in \mathrm{E}(H)}\left(\bigcup_{e_{1}, \ldots, e_{j} \in \in(E(H) \backslash\{e\}), j \leq k} 2^{\left(e n\left(e_{1} \cup \cdots \cup e_{j}\right)\right)}\right)
$$

- e must be fully covered at some node u^{*}
- Case 1: e is used in every cover along the path $u \leftrightarrow u^{*}$: simply add all vertices of e to all bags on this path.
- Case 2: e does not appear at some node u^{\prime} on path $u \leftrightarrow u^{*}$:
let $\lambda_{u^{\prime}}=\left\{e_{1}, \ldots, e_{k}\right\}$
by connectedness condition:

$$
e \cap \operatorname{bag}(u) \subseteq e \cap\left(e_{1} \cup \cdots \cup e_{k}\right)
$$

Realistic Properties?

CQ Application					
i	Deg	BIP	3-BMIP	4-BMIP	VC-dim
0	0	0	118	173	10
1	2	421	348	302	393
2	176	85	59	50	132
3	137	7	5	5	0
4	87	5	5	5	0
5	35	17	0	0	0
6	98	0	0	0	0

CSP Application \& Other					
i	Deg	BIP	3-BMIP	4-BMIP	VC-dim
0	0	0	597	603	0
1	0	1037	495	525	0
2	597	95	57	23	1115
3	6	29	21	21	52
4	20	10	2	0	0
5	6	0	0	0	0
>5	543	1	0	0	0

[Fischl, Gottlob, Longo, and P. 2019]

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
-hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Intractability of Checking Low Width

Theorem [Gottlob,Miklos, Schwentick 2007]

Checking whether a hypergraph H has ghw $(H) \leq 3$ is NP-complete.

Theorem [Fischl, Gottlob, P 2018]

Checking whether a hypergraph H has $f h w(H) \leq 2$ is NP-complete.
and as a side result:

Theorem [Fischl, Gottlob, P 2018]

Checking whether a hypergraph H has $g h w(H) \leq 2$ is NP-complete.

NP-Hardness Proof by Reduction from 3-SAT

- From propositional formula φ construct hypergraph H, s.t.

$$
\varphi \text { is satisfiable } \Leftrightarrow f h w(H) \leq 2 \text { and } g h w(H) \leq 2
$$

- Easy Part: φ is satisfiable $\Rightarrow f h w(H) \leq 2$ and $g h w(H) \leq 2$

NP-Hardness Proof by Reduction from 3-SAT

- From propositional formula φ construct hypergraph H, s.t.

$$
\varphi \text { is satisfiable } \Leftrightarrow f h w(H) \leq 2 \text { and } g h w(H) \leq 2
$$

- Easy Part: φ is satisfiable $\Rightarrow f h w(H) \leq 2$ and $g h w(H) \leq 2$
- Intended form of decomposition: "long path"

NP-Hardness Proof by Reduction from 3-SAT

- From propositional formula φ construct hypergraph H, s.t.

$$
\varphi \text { is satisfiable } \Leftrightarrow f h w(H) \leq 2 \text { and } g h w(H) \leq 2
$$

- Easy Part: φ is satisfiable $\Rightarrow f h w(H) \leq 2$ and $g h w(H) \leq 2$
- Intended form of decomposition: "long path"
- Hard Part: $f h w(H) \leq 2$ and $g h w(H) \leq 2 \Rightarrow \varphi$ is satisfiable

NP-Hardness Proof by Reduction from 3-SAT

- From propositional formula φ construct hypergraph H, s.t.

$$
\varphi \text { is satisfiable } \Leftrightarrow f h w(H) \leq 2 \text { and } g h w(H) \leq 2
$$

- Easy Part: φ is satisfiable $\Rightarrow f h w(H) \leq 2$ and $g h w(H) \leq 2$
- Intended form of decomposition: "long path"
- Hard Part: $f h w(H) \leq 2$ and $g h w(H) \leq 2 \Rightarrow \varphi$ is satisfiable
- Use gadgets to enforce intended form of decomposition
- "Read off" truth assignment on "long path"

Gadgets H_{0}, H_{0}^{\prime}

Gadgets H_{0}, H_{0}^{\prime}

Gadgets H_{0}, H_{0}^{\prime}

Gadgets H_{0}, H_{0}^{\prime}

Variables in $\varphi:\left\{x_{1}, \ldots, x_{n}\right\}$

$$
\text { in } \begin{aligned}
H_{0}: & a_{1}, a_{2}, \ldots, d_{1}, d_{2} \\
& M_{1} \cup M_{2}: \text { large set } S \text { and } Y=\left\{y_{1}, \ldots, y_{n}\right\}
\end{aligned}
$$

in $H_{0}^{\prime}: a_{1}^{\prime}, a_{2}^{\prime}, \ldots, d_{1}^{\prime}, d_{2}^{\prime}$

$$
M_{1}^{\prime} \cup M_{2}^{\prime}: \text { large set } S \text { and } Y^{\prime}=\left\{y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\}
$$

Encoding the clauses of φ

$$
c=x_{3} \vee \neg x_{5} \vee x_{8}
$$

Encoding the clauses of φ

$$
c=x_{3} \vee \neg x_{5} \vee x_{8}
$$

set x_{3} to true: Z does not contain y_{3}^{\prime}

Encoding the clauses of φ

$$
c=x_{3} \vee \neg x_{5} \vee x_{8}
$$

set x_{5} to false: Z does not contain y_{5}

Encoding the clauses of φ

$$
c=x_{3} \vee \neg x_{5} \vee x_{8}
$$

set x_{8} to true: Z does not contain y_{8}^{\prime}

Intended Decomposition

- $Z_{i} \subseteq Y \cup Y^{\prime}$
- Left to right:
$Z_{i} \cap Y$ monotonically decreasing
$\boldsymbol{Z}_{\boldsymbol{i}} \cap \boldsymbol{Y}^{\prime}$ monotonically increasing
- N big enough, s.t. $\boldsymbol{Z}_{\boldsymbol{i}}=\boldsymbol{Z}_{\boldsymbol{i + 1}}$ for some i
\Rightarrow read off truth assignment at $\boldsymbol{Z}_{\boldsymbol{i}}$

Roadmap

- 3 Problems: HOM, CSP, BCQ
- Hypergraphs and acyclicity
- Well-known width notions: tw, hw, ghw, fhw
- hw vs. ghw
- Tractable cases of ghw (and fhw) computation
- NP-hardness of the Check-problem for ghw and fhw
- A glimpse beyond fhw

Motivation

Best algorithm based on fhw (likewise ghw, hw, tw):

- Choose optimal tree T for Q
- Compute full $C Q Q_{t}$ for all $t \in \operatorname{Nodes}(T)$
- Run Yannakakis algorithm on the join tree

Motivation

Best algorithm based on fhw (likewise ghw, hw, tw):

- Choose optimal tree T for Q
- Compute full $C Q Q_{t}$ for all $t \in \operatorname{Nodes}(T)$
- Run Yannakakis algorithm on the join tree

Total time: $=\mathrm{O}\left(|\mathrm{Q}| * \mathrm{~N}^{\mathrm{fhw}(\mathrm{Q})}+\mid\right.$ Output $\left.\mid\right)$, with $\mathrm{N}=$ max-size of relations

However, this is not optimal!

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

Tree T1=

fhw $(Q)=2$

The 4-Cycle Query

$Q()=R(x, y), S(y, z), T(z, u), K(u, x)$

Tree T1=
fhw $(\mathrm{Q})=2$

The 4-Cycle Query

$Q()=R(x, y), S(y, z), T(z, u), K(u, x)$

Tree T1=

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

Tree T1=
Tree T2=

fhw $(Q)=2$

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

Tree T1=
Tree T2=

If we choose T 1 , then time $=\Omega\left(\mathrm{N}^{2}\right)$ on $\mathrm{R}=\mathrm{T}=[\mathrm{N}] \times[1], \mathrm{S}=\mathrm{K}=[1] \times[\mathrm{N}]$

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

Tree T1= Tree T2=

If we choose T1, then time $=\Omega\left(\mathrm{N}^{2}\right)$ on $\mathrm{R}=\mathrm{T}=[\mathrm{N}] \times[1], \mathrm{S}=\mathrm{K}=[1] \times[\mathrm{N}]$ If we choose T 2 , then time $=\Omega\left(\mathrm{N}^{2}\right)$ on $\mathrm{R}=\mathrm{T}=[1] \times[\mathrm{N}], \mathrm{S}=\mathrm{K}=[\mathrm{N}] \times[1]$

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

Tree T1= Tree T2=

If we choose $T 1$, then time $=\Omega\left(N^{2}\right)$ on $R=T=[N] \times[1], S=K=[1] \times[N]$ If we choose $T 2$, then time $=\Omega\left(N^{2}\right)$ on $R=T=[1] \times[N], S=K=[N] \times[1]$

Best runtime using traditional tree decompositions $=\mathrm{O}\left(\mathrm{N}^{2}\right)$

The 4-Cycle Query

$$
Q()=R(x, y), S(y, z), T(z, u), K(u, x)
$$

Tree T1=

Tree T2=

If we choose T 1 , then time $=\Omega\left(\mathrm{N}^{2}\right)$ on $\mathrm{R}=\mathrm{T}=[\mathrm{N}] \times[1], \mathrm{S}=\mathrm{K}=[1] \times[\mathrm{N}]$ If we choose T 2 , then time $=\Omega\left(\mathrm{N}^{2}\right)$ on $\mathrm{R}=\mathrm{T}=[1] \times[\mathrm{N}], \mathrm{S}=\mathrm{K}=[\mathrm{N}] \times[1]$

Best runtime using traditional tree decompositions $=\mathrm{O}\left(\mathrm{N}^{2}\right)$
[Alon,Yuster,Zwick 1997] O($\mathrm{N}^{3 / 2}$) algorithm for detecting a 4-cycle

General Framework for Defining Width

f-width:

- let $f: 2^{V} \rightarrow R^{+}$
- f -width of a tree decomposition $\mathrm{T}: \max \left(\left\{f\left(B_{t}\right) \mid t \in V(T)\right\}\right)$
- f-width of a hypergraph H : = minimum f-width over all tree decompositions of H

General Framework for Defining Width

f-width:

- let $f: 2^{V} \rightarrow R^{+}$
- f-width of a tree decomposition $\mathrm{T}: \max \left(\left\{f\left(B_{t}\right) \mid t \in V(T)\right\}\right)$
- f-width of a hypergraph H : = minimum f-width over all tree decompositions of H
$\operatorname{tw}(H)=s$-width (H) with $s(B)=|B|-1$
ghw $(H)=\rho_{H^{-}}$-width (H) with $\rho_{H}(B)=$ edge cover number of B
fhw $(H)=\rho_{H}^{*}$-width (H) with $\rho_{H}^{*}(B)=$ fractional edge cover number of B
Remark: hw with the special condition is outside this framework

Duality of Linear Programs

- The dual of covering is independence.
- $X \subseteq V(H)$ is independent, if $|e \cap X| \leq 1$ for every $e \in E(H)$
- $\Phi: V(H) \rightarrow[0,1]$ is a fractional independent set (FIS),
if $\sum_{\{v \in \mathrm{e}\}} \Phi(v) \leq 1$ for every $e \in E(H)$

Duality of Linear Programs

- The dual of covering is independence.
- $X \subseteq V(H)$ is independent, if $|e \cap X| \leq 1$ for every $e \in E(H)$
- $\Phi: V(H) \rightarrow[0,1]$ is a fractional independent set (FIS), if $\sum_{\{v \in \mathrm{e}\}} \Phi(v) \leq 1$ for every $e \in E(H)$
- The fractional independent set number α_{H}^{*} of H is the maximum of $\sum_{\{v \in V(H)\}} \Phi(v)$ over all fractional independent sets Φ of H .
- By duality of Linear Programs, we have $\rho_{H}^{*}=\alpha_{H}^{*}$

Adaptive Width (adw)

F-width:

- let F be a set of functions $f: 2^{V} \rightarrow R^{+}$
- F-width of a tree decomposition $\mathrm{T}: \sup (\{f$-width $(H) \mid f \in F\})$

Adaptive Width (adw)

F-width:

- let F be a set of functions $f: 2^{V} \rightarrow R^{+}$
- F-width of a tree decomposition $\mathrm{T}: \sup (\{f$-width $(H) \mid f \in F\})$ Adaptive width (adw) [Marx 2011]:
$\operatorname{adw}(H)=F$-width (H), where $\mathrm{F}=$ set of all FIS of H.

Adaptive Width (adw)

F-width:

- let F be a set of functions $f: 2^{V} \rightarrow R^{+}$
- F-width of a tree decomposition $\mathrm{T}: \sup (\{f$-width $(H) \mid f \in F\})$

Adaptive width (adw) [Marx 2011]:
$\operatorname{adw}(H)=F$-width (H), where $\mathrm{F}=$ set of all FIS of H.

$\mathrm{BCO}_{\mathrm{tt}}$-problem (= BCQ with truth tables)

BCQ answering problem, where the database is given as truth tables (i.e., relation of arity k is given as set of all k-tuples over the domain with values true/false.

Adaptive Width (adw)

F-width:

- let F be a set of functions $f: 2^{V} \rightarrow R^{+}$
- F-width of a tree decomposition T: $\sup (\{f$-width $(H) \mid f \in F\})$

Adaptive width (adw) [Marx 2011]:
$\operatorname{adw}(H)=F$-width (H), where $\mathrm{F}=$ set of all FIS of H.

$\mathrm{BCO}_{\mathrm{tt}}$-problem (= BCQ with truth tables)

BCQ answering problem, where the database is given as truth tables (i.e., relation of arity k is given as set of all k-tuples over the domain with values true/false.

Theorem [Marx 2011]
Let C be a class of BCQs of bounded adaptive width.
Then the $B C Q_{t t}$-problem for C is in PTIME.

fhw vs. adw

Let $\mathrm{F}=$ set of all FIS of H and let $\mathrm{G}=$ set of fractional edge covers:

- $f h w(H)=\min _{T} \max _{t} \underbrace{\min _{\Psi \in G} \Psi\left(B_{t}\right)=}$

$$
\min _{T} \max _{t} \overbrace{\max _{\{\Phi \in F\}}}^{\rho_{H}^{*}\left(B_{t}\right)=\alpha_{H}^{*}\left(B_{t}\right)}
$$

fhw vs. adw

Let $\mathrm{F}=$ set of all FIS of H and let $\mathrm{G}=$ set of fractional edge covers:

- $f h w(H)=\min _{T} \max _{t} \underbrace{\min _{\Psi \in G} \Psi\left(B_{t}\right)=}$

$$
\min _{T} \max _{t} \overbrace{\max _{\{\Phi \in F\}}}^{\rho_{H}^{*}\left(B_{t}\right)=\alpha_{H}^{*}\left(B_{t}\right)}
$$

Big difference! In adw, we are allowed to choose T after we see Φ

- $\operatorname{adw}^{(H)}=\max _{\{\Phi \in F\}} \min _{T} \max _{t} \Phi\left(B_{t}\right)$
- Easy to check: $a d w(H) \leq f h w(H)$
- Fact: bounded fhw does not imply bounded adw.

Towards Submodular-Width (subw)

Properties of fractional independent sets:

- non-negative: $f: 2^{V} \rightarrow R^{+}$
- edge-dominated: $f(e) \leq 1$ for every e $\in E(H)$
- modular: $f(X)+f(Y)=f(X \cup Y)+f(X \cap Y)$ for every $\mathrm{X}, \mathrm{Y} \subseteq V(H)$
- $f(\varnothing)=0$
- (and therefore monotone)

Towards Submodular-Width (subw)

Properties of fractional independent sets:

- non-negative: $f: 2^{V} \rightarrow R^{+}$
- edge-dominated: $f(e) \leq 1$ for every e $\in E(H)$
- modular: $f(X)+f(Y)=f(X \cup Y)+f(X \cap Y)$ for every $\mathrm{X}, \mathrm{Y} \subseteq V(H)$
- $f(\varnothing)=0$
- (and therefore monotone)

Relaxation:

- non-negative: $f: 2^{V} \rightarrow R^{+}$
- edge-dominated: $f(e) \leq 1$ for every e $\in E(H)$
- submodular: $f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y)$ for every $\mathrm{X}, \mathrm{Y} \subseteq V(H)$
- monotone: $\mathrm{X} \subseteq Y \Rightarrow f(X) \leq f(Y)$
- $f(\varnothing)=0$

Submodular-Width (subw)

Submodular-width (subw) [Marx 2013]
$\operatorname{subw}(H)=F$-width (H), where F is the set of non-negative, monotone, edgedominated, submodular functions with $f(\varnothing)=0$.

Submodular-Width (subw)

Submodular-width (subw) [Marx 2013]
$\operatorname{subw}(H)=F$-width (H), where F is the set of non-negative, monotone, edgedominated, submodular functions with $f(\varnothing)=0$.

BCQ (H) for a class H of hypergraphs.

BCQ -answering problem restricted to BCQs whose hypergraphs are in class H .

Theorem [Marx 2013]

Let C be a recursively enumerable class of hypergraphs. Then, assuming the Exponential Time Hypothesis, $\mathrm{BCQ}(\mathrm{C})$ is fixed-parameter tractable with query Q as parameter, if and only if C has bounded submodular-width.

subw vs. adw vs. fhw

Easy observation

For every hypergraph H : $a d w(H) \leq \operatorname{subw}(H)$.
Immediate from the fact that subw is max over a bigger set than adw.

subw vs. adw vs. fhw

Easy observation

For every hypergraph H : $a d w(H) \leq \operatorname{subw}(H)$.
Immediate from the fact that subw is max over a bigger set than adw.

Lemma [Marx 2013]

For every hypergraph $H: \operatorname{subw}(H) \leq f h w(H)$.

Theorem [Marx 2013]

For every hypergraph H , we have subw $(H)=O\left(\operatorname{adw}(H)^{4}\right)$.
Hence, a class C of hypergraphs has bounded subw iff it has bounded adw.

Current State of Affairs

- Relationship between various notions of width is well understood
- Boundary of tractability of the Check-problem
- Progress with computation of HDs, GHDs, and FHDs
- Precise characterization of FPT CQ-Answering
- Precise characterization of PTIME CQ-Answering for bounded arity

Future Work

- Precise characterization of PTIME CQ-Answering for unbounded arity
- Further improvement of HD, GHD, and FHD computation
- Decomposition-based query answering vs. cost-based optimization

References: Classics

- [Bodlaender, 1993] Hans L. Bodlaender: A linear time algorithm for finding tree-decompositions of small treewidth. STOC 1993: 226-234
- [Chandra and Merlin 1977] Ashok K. Chandra and Philip M. Merlin: Optimal implementation of conjunctive queries in relational data bases. STOC 1977: 77-90.
- [Feder and Vardi 1993] Tomás Feder, Moshe Y. Vardi: Monotone monadic SNP and constraint satisfaction. STOC 1993: 612-622
- [Freuder, 1990] Eugene C. Freuder: Complexity of K-Tree Structured Constraint Satisfaction Problems. AAAI 1990: 4-9
- [Kolaitis and Vardi, 1998]: Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Containment and Constraint Satisfaction. PODS 1998: 205-213
- [Yannakakis 1981] Mihalis Yannakakis: Algorithms for Acyclic Database Schemes. VLDB 1981: 82-94

References: Width Notions

- [Abo Khamis, Ngo, Suciu 2017] Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu: What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another? PODS 2017: 429-444
- [Adler, Gottlob, Grohe, 2007] Isolde Adler, Georg Gottlob, Martin Grohe: Hypertree width and related hypergraph invariants. Eur. J. Comb. 28(8): 2167-2181 (2007)
- [Chekuri and Rajaraman 1997] Chandra Chekuri, Anand Rajaraman: Conjunctive Query Containment Revisited. ICDT 1997: 56-70
- [Gottlob, Leone, Scarcello 1999] Georg Gottlob, Nicola Leone, Francesco Scarcello: Hypertree Decompositions and Tractable Queries. PODS 1999: 21-32
- [Grohe 2007] Martin Grohe: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1): 1:1-1:24 (2007)

References: Width Notions (cont.)

- [Gottlob, Miklos, Schwentick 2007] Georg Gottlob, Zoltán Miklós, Thomas Schwentick: Generalized hypertree decompositions: NP-hardness and tractable variants. PODS 2007: 13-22
- [Grohe and Marx 2006] Martin Grohe, Dániel Marx: Constraint solving via fractional edge covers. SODA 2006: 289-298
- [Marx, 2010] Dániel Marx: Approximating fractional hypertree width. ACM Trans. Algorithms 6(2): 29:1-29:17 (2010)
- [Marx, 2011] Dániel Marx: Tractable Structures for Constraint Satisfaction with Truth Tables. Theory Comput. Syst. 48(3): 444-464 (2011)
- [Marx 2013] Dániel Marx: Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. J. ACM 60(6): 42:1-42:51 (2013)

References: Our Recent Works

- [Fischl, Gottlob, P., 2018] W.Fischl, G.Gottlob, R.Pichler: General and Fractional Hypertree Decompositions: Hard and Easy Cases. PODS 2018: 17-32 (extended version in J. ACM, 2021)
- [Fischl, Gottlob, Longo, P., 2019] W.Fischl, G.Gottlob, D.Longo, R.Pichler: HyperBench: A Benchmark and Tool for Hypergraphs and Empirical Findings. PODS 2019: 464-480 (full version in ACM J. Exp. Alg., 2021)
- [Gottlob, Lanzinger, P., Razgon, 2020] G.Gottlob, M.Lanzinger, R.Pichler, I.Razgon: Fractional Covers of Hypergraphs with Bounded Multi-Intersection. MFCS 2020: 41:1-41:14
- [Gottlob, Okulmus, P., 2020] G.Gottlob, C.Okulmus, R.Pichler: Fast and Parallel Decomposition of Constraint Satisfaction Problems. IJCAI 2020: 1155-1162.
- [Gottlob, Lanzinger, Okulmus, P., 2021] G.Gottlob, M.Lanzinger, C.Okulmus, R.Pichler: Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth. PODS 2022: 325-336

