
Acyclity and Notions of "Width" of Hypergraphs

Reinhard Pichler

TU Wien

Joint work with several co-authors

(Fischl/Gottlob/Lanzinger/Longo/Okulmus from TU Wien + Razgon from Birkbeck U.)

Simons Institute, 18 September, 2023

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Three Problems

• BCQ: Boolean Conjunctive Query Evaluation

• CSP: Constraint Satisfaction Problem

• HOM: Homomorphism Problem

All these problems are essentially the same.

All these problems are based on hypergraphs.

),...,,,(

),...,,,(

21

21

k

k

SSSVB

RRRUA





Given two relational structures

Decide whether there exists a homomorphism h from A to B

ii ShR

i

VUh







)(

,thatsuch

:

xx

x

[Feder and Vardi 1993] Relationship to CSP, restrictions on B
[Kolaitis and Vardi 1998] Relationship to Query Containment, restrictions on A, B

HOM: Homomorphism Problem

CSP: Constraint Satisfaction Problem

Set of variables V={X1,...,Xn}, domain D, and set of constraints {C1,...,Cm},

where: Ci= <Si, Ri>

scope relation

(Xj1,...,Xjr) 1 6 7 3
1 5 3 9
2 4 7 6
3 5 4 7

Solution to the CSP: A substitution h: V  D such that i: h(Si) Ri

BCQ: Boolean Conjunctive Query Evaluation

DATABASE:

QUERY:

Is there any teacher having a child enrolled in her course?

ans  Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S)

John Algebra 2003

Robert Logic 2003

Mary DB 2002

Lisa DB 2003

…… ….. …….

McLane Algebra March

Verdi Logic May

Lausen DB June

Rahm DB May

……… ….. …….

McLane Lisa

Verdi Robert

Rahm Mary

……… …..

Enrolled Teaches Parent

BCQ: Boolean Conjunctive Query Evaluation

DATABASE:

John Algebra 2003

Robert Logic 2003

Mary DB 2002

Lisa DB 2003

…… ….. …….

McLane Algebra March

Vardi Logic May

Lausen DB June

Rahm DB May

……… ….. …….

McLane Lisa

Vardi Robert

Rahm Mary

……… …..

Enrolled Teaches Parent

homomorphism

ans  Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S)

Membership: Obvious, guess h.

Hardness: Reduction from 3COL.

3

21

4

5

6

1 2

1

32

3

3 4

2 5

4 5

3 6

A B

h

h

Graph is 3-colourable iff HOM(A,B) is yes-instance.

red green

red

red

red
green

green

green

blue

blue
blue

blue

NP-Completeness of HOM

homomorphism

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acylicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Hypergraph of a CQ

Hypergraph H = (V,E):

vertices V: variables of the CQ

edges E: atoms of the CQ

Acyclic CQs (ACQs)

𝑅𝑆 𝐶′

𝐴𝑃 𝐶

QUERY: Is there any teacher having a child enrolled in some course?

𝑎𝑛𝑠 ← 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑆, 𝐶′, 𝑅 ∧ 𝑇𝑒𝑎𝑐ℎ𝑒𝑠 𝑃, 𝐶, 𝐴 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑃, 𝑆)

Acyclic CQs (ACQs)

𝑅𝑆 𝐶′

𝐴𝑃 𝐶

QUERY: Is there any teacher having a child enrolled in some course?

𝑎𝑛𝑠 ← 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑆, 𝐶′, 𝑅 ∧ 𝑇𝑒𝑎𝑐ℎ𝑒𝑠 𝑃, 𝐶, 𝐴 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑃, 𝑆)

Join Tree

Acyclic CQs (ACQs)

QUERY: Is there any teacher having a child enrolled in some course?

𝑎𝑛𝑠 ← 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑆, 𝐶′, 𝑅 ∧ 𝑇𝑒𝑎𝑐ℎ𝑒𝑠 𝑃, 𝐶, 𝐴 ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑃, 𝑆)

Join Tree

Properties of a Join Tree:

• Nodes correspond to atoms

• For each query variable V, the
tree-nodes containing V span a
connected subtree
(connectednes condition)

Complexity of CQ Answering

• NP-complete in the general case [Chandra and Merlin 1977]

• Tractable in case of acyclic CQs [Yannakakis 1981]

even LOGCFL-complete, thus parallelizable [Gottlob,Leone,Scarcello 1998]

Complexity of CQ Answering

• NP-complete in the general case [Chandra and Merlin 1977]

• Tractable in case of acyclic CQs [Yannakakis 1981]

even LOGCFL-complete, thus parallelizable [Gottlob,Leone,Scarcello 1998]

Key Idea:
• semi-joins along bottom-up and top-down traversals of the join tree

• joins along another bottom-up traversal of the join tree

Complexity of CQ Answering

• NP-complete in the general case [Chandra and Merlin 1977]

• Tractable in case of acyclic CQs [Yannakakis 1981]

even LOGCFL-complete, thus parallelizable [Gottlob,Leone,Scarcello 1998]

Key Idea:
• semi-joins along bottom-up and top-down traversals of the join tree

• joins along another bottom-up traversal of the join tree

Time Complexity of CQ evaluation: 𝑂(𝑄 ⋅ 𝑁 + 𝑂𝑢𝑡𝑝𝑢𝑡)

with N = max size of the relations

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously,

if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously,

if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

• Eliminate an atom if it shares no variables with other atoms;

-> This atom can be used as root node of another tree.

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously,

if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

• Eliminate an atom if it shares no variables with other atoms;

-> This atom can be used as root node of another tree.

• Eliminate an atom R if there exists a witness R' s.t. each variable

in R either appears in R only, or also appears in R';

-> R will be appended as child of R' in the join tree.

Recognizing ACQs and Join Tree Construction

Theorem: ACQs can be recognized and, simultaneously,

if the CQ is acyclic, a join-tree can be built in linear time.

Algorithm: "GYO-reduction" (Graham resp. Yu and Ozsoyoglu 1979):

• Eliminate an atom if it shares no variables with other atoms;

-> This atom can be used as root node of another tree.

• Eliminate an atom R if there exists a witness R' s.t. each variable

in R either appears in R only, or also appears in R';

-> R will be appended as child of R' in the join tree.

The query is acyclic iff the GYO-reduction yields the empty set of atoms.

Join Tree

Join Tree

Join Tree

Join Tree

Join Tree

Join Tree

Join Tree Construction

Join Tree Construction

Join Tree Construction

Join Tree Construction

Join Tree Construction

Join Tree Construction

Yannakakis' Algorithm

Label each node t in the join tree with the actual relation Rt

Boolean ACQ:

• Semi-joins in a bottom-up traversal of the join tree

Non-Boolean ACQ:

• Semi-joins in a top-down traversal of the join tree

• Joins in another bottom-up traversal of the join tree

Correctness of Yannakakis' Algorithm

How to generalize query acyclicity?

Generalizations of acyclicity come with some notion of width

expressing the degree of cyclicity.

Desiderata for a "good" generalization:

• Generalization of Acyclicity:

Queries of width k≥1 include all acyclic CQs

• Tractable Recognizability:

Width k queries can be recognized efficiently

• Tractable Query Answering:

Width k queries can be answered efficiently

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

• Connectedness Condition

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

• Connectedness Condition

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

• Connectedness Condition

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

• Connectedness Condition

Width of TD: 8

Tree Decomposition

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

• Variables of each atom
covered by some node

• Connectedness Condition

Width of TD: 8

tw(Q) = minimum width over all TDs of Q

Edge Covers

• Consider a set of vertices 𝑉′ ⊆ 𝑉 𝐻

• An edge cover is a set of edges 𝐸′ ⊆ 𝐸(𝐻), s.t.

all vertices in 𝑉′ are "covered" by 𝐸′, i.e. 𝑉′ ⊆ ′𝑒∈𝐸ڂ 𝑒

• Add edge covers to the tree decomposition

• Each node p in the decomposition has two "labels":

• λ(p): set of edges

• χ(p): set of vertices

Generalized Hypertree Decompositions
Tree Decompositions + Edge Covers

Width of TD: 8 Width of GHD: 2

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

Generalized Hypertree Decompositions
Tree Decompositions + Edge Covers

Width of TD: 8 Width of GHD: 2

𝑎𝑛𝑠 ← 𝑎 𝑆, 𝑋, 𝑋′, 𝐶, 𝐹 ∧ 𝑏 𝑆, 𝑌, 𝑌′, 𝐶′, 𝐹′ ∧ 𝑐 𝐶, 𝐶′, 𝑍 ∧ 𝑑 𝑋, 𝑍 ∧ 𝑒 𝑌, 𝑍 ∧
𝑓 𝐹, 𝐹′, 𝑍′ ∧ 𝑔 𝑋′, 𝑍′ ∧ ℎ 𝑌′, 𝑍′ ∧ 𝑗 𝐽, 𝑋, 𝑌, 𝑋′, 𝑌′ ∧ 𝑝 𝐵, 𝑋′, 𝐹 ∧ 𝑞(𝐵′, 𝑋′, 𝐹)

ghw(Q) = minimum width over all GHDs of Q

Tractable CQ answering for bounded ghw

• Key Idea: local joins of "edge labels" in the GHD to obtain ACQ

• for ghw = k: joins of up to k relations

• Time complexity of CQ answering if ghw(Q) ≤ k:

𝑂(𝑄 ⋅ 𝑁 𝑘 + 𝑂𝑢𝑡𝑝𝑢𝑡)

Tractable CQ answering for bounded ghw

• Key Idea: local joins of "edge labels" in the GHD to obtain ACQ

• for ghw = k: joins of up to k relations

• Time complexity of CQ answering if ghw(Q) ≤ k:

𝑂(𝑄 ⋅ 𝑁 𝑘 + 𝑂𝑢𝑡𝑝𝑢𝑡)

Compare this with bounded tree width:

• for tw = k: views of up to k+1 variables

• Time complexity of CQ answering if tw(Q) ≤ k:

𝑂(|𝑄| ⋅ 𝑎𝑑𝑜𝑚 𝑘+1 + 𝑂𝑢𝑡𝑝𝑢𝑡)

Hypertree Decompositions
GHD + Special Condition

Width of GHD: 2

Hypertree Decompositions
GHD + Special Condition

Each variable that disappeared at some node n

Hypertree Decompositions
GHD + Special Condition

Each variable that disappeared at some node n

does not reappear in the subtree rooted at n

Hypertree Decompositions
GHD + Special Condition

Each variable that disappeared at some node n

does not reappear in the subtree rooted at n

Width of HD: 2

hw(Q) = minimum width over all HDs of Q

Integral vs. Fractional Edge Covers

Integral Edge Covers

Let 𝜆 be a function: 𝐸 𝐻 → {𝟎, 𝟏} then

𝐵 𝜆 = 𝑣 ∈ 𝑉 𝐻 σ𝑒∈𝐸 𝐻 ,𝑣∈𝑒 𝜆 𝑒 ≥ 1}.

Fractional Edge Covers

Let 𝛾 be a function: 𝐸 𝐻 → [𝟎, 𝟏] then

𝐵 𝛾 = 𝑣 ∈ 𝑉 𝐻 σ𝑒∈𝐸 𝐻 ,𝑣∈𝑒 𝛾 𝑒 ≥ 1}.

Fractional Hypertree Decompositions
Tree Decompositions + Fractional Edge Covers

Width of FHD: 2

fhw(Q) = minimum width over all FHDs of Q

Tractable CQ Answering for Bounded Width

Proposition

For every hypergraph 𝐻: 𝑓ℎ𝑤 𝐻 ≤ 𝑔ℎ𝑤 𝐻 ≤ ℎ𝑤 𝐻 ≤ 𝑡𝑤 𝐻 + 1.

Theorem

Answering CQs is tractable for classes of CQs with bounded
• 𝑡𝑤 [Chekuri and Rajaraman 1997, Kolaitis and Vardi 1998];

• ℎ𝑤, 𝑔ℎ𝑤 [Gottlob, Leone, and Scarcello 1999], [Adler, Gottlob, and Grohe 2007]

• 𝑓ℎ𝑤 [Grohe and Marx 2006], [Marx 2010].

Checking Low Width

CHECK(𝑡𝑤|ℎ𝑤|𝑔ℎ𝑤|𝑓ℎ𝑤) for fixed 𝒌 ≥ 𝟏

input hypergraph 𝐻

output „yes“ if 𝑡𝑤 𝐻 ℎ𝑤 𝐻 𝑔ℎ𝑤 𝐻 ∣ 𝑓ℎ𝑤(𝐻) ≤ 𝑘
(and output decomposition of width ≤ 𝑘)

„no“ otherwise

Checking Low Width

Complexity of the CHECK-Problem

• 𝑡𝑤: tractable (even FPL in k) [Freuder 1990], [Bodlaender 1993]

• ℎ𝑤: tractable [Gottlob, Leone, and Scarcello 1999]

• 𝑔ℎ𝑤: NP-complete for 𝒌 ≥ 𝟑 [Gottlob, Miklos, and Schwentick 2007]

• 𝑓ℎ𝑤: NP-complete for 𝒌 ≥ 𝟐 [Fischl, Gottlob, and P. , 2018]

CHECK(𝑡𝑤|ℎ𝑤|𝑔ℎ𝑤|𝑓ℎ𝑤) for fixed 𝒌 ≥ 𝟏

input hypergraph 𝐻

output „yes“ if 𝑡𝑤 𝐻 ℎ𝑤 𝐻 𝑔ℎ𝑤 𝐻 ∣ 𝑓ℎ𝑤(𝐻) ≤ 𝑘
(and output decomposition of width ≤ 𝑘)

„no“ otherwise

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Decomposition

Decomposition

Decomposition

Decomposition

Decomposition

Components
[U]-Compnents

Consider hypergraph H and subset U of the vertices of H:

• Two edges e1, e2 are [U]-adjacent, if (𝑒1∩ 𝑒2) ∖ 𝑈 ≠ ∅.

• Define [U]-connectedness as transitive closure of [U]-adjacency.

• A [U]-component of H is a maximally [U]-connected subset of E(H).

Components
[U]-Compnents

Consider hypergraph H and subset U of the vertices of H:

• Two edges e1, e2 are [U]-adjacent, if (𝑒1∩ 𝑒2) ∖ 𝑈 ≠ ∅.

• Define [U]-connectedness as transitive closure of [U]-adjacency.

• A [U]-component of H is a maximally [U]-connected subset of E(H).

Observation [Gottlob, Leone, and Scarcello 1999]

Given an HD (likewise a GHD) T of width k, we can transform T into an HD

(resp. GHD) T’ of width ≤ k, such that for every node p in T’ we have: each

subtree rooted at a child node of p covers exactly one [χ(p)]-component of H.

Tractable Computation of an HD

Idea

Recursive procedure:

Input: a component C of the hypergraph H

the bag at the parent node p in the HD

{ guess an edge cover λ(c) of size ≤ k at the child c of p;

determine the bag χ(c); // subset of ڂ𝜆(𝑐) to ensure connectedness of

// χ(c) with C and all vertices in C ∩ 𝜆(𝑐)ڂ

determine the [χ(c)]-components of H inside C;

recursively call the procedure for every such component }

Difficulty of Checking Low 𝑔ℎ𝑤

• Top down construction of
decomposition

• Guess ≤ 𝑘 edges

• Bag of nodes fully determined

Vertices disappearing
may never appear below

Hypertree Decomposition Computation

Difficulty of Checking Low 𝑔ℎ𝑤

• Top down construction of
decomposition

• Guess ≤ 𝑘 edges

• Question:
How to determine bag of variables?

• Problem: (for unbounded arity)
There are exponentially many
possible subsets of the edge cover

Vertices disappearing
may appear below

Generalized Hypertree Decomposition Computation

HW vs. GHW

GHD of width 2 [Adler, Gottlob, and Grohe 2007]

HW vs. GHW

violation of the special condition!

HW vs. GHW

HD of width 3 [Adler, Gottlob, and Grohe 2007]

HW vs. GHW

Theorem [Adler, Gottlob, and Grohe 2007]

For every hypergraph H, we have hw 𝐻 ≤ 3 ⋅ 𝑔ℎ𝑤 𝐻 + 1.
Hence, a class of hypergraphs has bounded hw iff it has bounded ghw.

HW vs. GHW

Empirical observation:

the difference between

hw and ghw is much

smaller in practice.

Theorem [Adler, Gottlob, and Grohe 2007]

For every hypergraph H, we have hw 𝐻 ≤ 3 ⋅ 𝑔ℎ𝑤 𝐻 + 1.
Hence, a class of hypergraphs has bounded hw iff it has bounded ghw.

[Fischl, Gottlob, Longo, and P. 2019]

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Tractable Classes

We were looking for restrictions giving large classes for which computing
ghw and fhw is tractable, or fhw PTIME approximable (better than k3)

Such classes should fullfil the following criteria:

Polynomial-time recognizable

Nontrivial: They should not guarantee tractability of CQ Answering
by themselves (e.g. acyclic queries).

Realistic: A large proportion of the existing real-life benchmarks
is covered, or some important classes (e.g. bounded arity).

Restrictions for Tractability

BIP (bounded intersection property): i HC, e1,e2E(H), |e1e2| ≤ i.

BMIP (bd. multi-intersection prop.): i c HC, e1…ecE(H), |e1…ec|≤i.

BR (bounded rank): r HC eE(H), |e| ≤ i.

A class C of hypergraphs enjoys:

BD (bounded degree): d HC vV(H), |{eE(H) | ve}| ≤ d.

BVC (bounded vc-dimension):  HC vc(H) ≤ 

Restrictions for Tractability

BIP (bounded intersection property): i HC, e1,e2E(H), |e1e2| ≤ i.

BMIP (bd. multi-intersection prop.): i c HC, e1…ecE(H), |e1…ec|≤i.

BR (bounded rank): r HC eE(H), |e| ≤ i.

A class C of hypergraphs enjoys:

BD (bounded degree): d HC vV(H), |{eE(H) | ve}| ≤ d.

BVC (bounded vc-dimension):  HC vc(H) ≤ 

Note: BRBIPBMIPBVC; BDBMIP; none of the implications reversible.

Results

GHW Computation for Bounded Intersection
Goal: add polynomially many subedges to 𝐻 so that 𝜒 𝑝 = 𝜆(𝑝)ڂ at each node p of a GHD.

𝑓 𝐻, 𝑘 = ራ

𝑒∈E 𝐻

ራ

𝑒1,…,𝑒𝑗∈ 𝐸 𝐻 \ 𝑒 ,𝑗≤𝑘

2
𝑒∩ 𝑒1∪⋯∪𝑒𝑗

GHW Computation for Bounded Intersection
Goal: add polynomially many subedges to 𝐻 so that 𝜒 𝑝 = 𝜆(𝑝)ڂ at each node p of a GHD.

𝑓 𝐻, 𝑘 = ራ

𝑒∈E 𝐻

ራ

𝑒1,…,𝑒𝑗∈ 𝐸 𝐻 \ 𝑒 ,𝑗≤𝑘

2
𝑒∩ 𝑒1∪⋯∪𝑒𝑗

• 𝑒 must be fully covered at some node 𝑢∗

• Case 1: 𝑒 is used in every cover along the path 𝑢 ↔ 𝑢∗:
simply add all vertices of 𝑒 to all bags on this path.

• Case 2: 𝑒 does not appear at some node 𝑢′ on path 𝑢 ↔ 𝑢∗:
let 𝜆𝑢′ = 𝑒1, … , 𝑒𝑘
by connectedness condition:
𝑒 ∩ 𝑏𝑎𝑔 𝑢 ⊆ 𝑒 ∩ (𝑒1 ∪⋯∪ 𝑒𝑘)

Realistic Properties?

[Fischl, Gottlob, Longo, and P. 2019]

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Intractability of Checking Low Width

Theorem [Gottlob,Miklos, Schwentick 2007]

Checking whether a hypergraph 𝐻 has gℎ𝑤 𝐻 ≤ 3 is NP-complete.

and as a side result:

Theorem [Fischl, Gottlob, P 2018]

Checking whether a hypergraph 𝐻 has 𝑔ℎ𝑤 𝐻 ≤ 2 is NP-complete.

Theorem [Fischl, Gottlob, P 2018]

Checking whether a hypergraph 𝐻 has 𝑓ℎ𝑤 𝐻 ≤ 2 is NP-complete.

NP-Hardness Proof by Reduction from 3-SAT

• From propositional formula 𝜑 construct hypergraph 𝐻, s.t.

𝜑 is satisfiable ⇔ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2

• Easy Part: 𝜑 is satisfiable ⇒ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2

NP-Hardness Proof by Reduction from 3-SAT

• From propositional formula 𝜑 construct hypergraph 𝐻, s.t.

𝜑 is satisfiable ⇔ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2

• Easy Part: 𝜑 is satisfiable ⇒ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2
• Intended form of decomposition: "long path"

NP-Hardness Proof by Reduction from 3-SAT

• From propositional formula 𝜑 construct hypergraph 𝐻, s.t.

𝜑 is satisfiable ⇔ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2

• Easy Part: 𝜑 is satisfiable ⇒ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2
• Intended form of decomposition: "long path"

• Hard Part: 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2 ⇒ 𝜑 is satisfiable

NP-Hardness Proof by Reduction from 3-SAT

• From propositional formula 𝜑 construct hypergraph 𝐻, s.t.

𝜑 is satisfiable ⇔ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2

• Easy Part: 𝜑 is satisfiable ⇒ 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2
• Intended form of decomposition: "long path"

• Hard Part: 𝑓ℎ𝑤 𝐻 ≤ 2 and 𝑔ℎ𝑤 𝐻 ≤ 2 ⇒ 𝜑 is satisfiable
• Use gadgets to enforce intended form of decomposition

• "Read off" truth assignment on "long path"

Gadgets 𝐻0, 𝐻0
′

Gadgets 𝐻0, 𝐻0
′

Gadgets 𝐻0, 𝐻0
′

Gadgets 𝐻0, 𝐻0
′

Variables in 𝝋: {𝒙𝟏, … , 𝒙𝒏}

in 𝐻0: 𝑎1, 𝑎2, … , 𝑑1, 𝑑2
𝑀1 ∪𝑀2: large set 𝑆 and 𝑌 = {𝑦1, … , 𝑦𝑛}

in 𝐻0
′ : 𝑎1

′ , 𝑎2
′ , … , 𝑑1

′ , 𝑑2
′

𝑀1
′ ∪𝑀2

′ : large set 𝑆 and 𝑌′ = {𝑦1
′ , … , 𝑦𝑛

′ }

Encoding the clauses of 𝜑
𝑐 = 𝑥3 ∨ ¬𝑥5 ∨ 𝑥8

𝐵1 ∪ 𝑆 ∖ 𝑆 1 ∪ 𝑌

𝐵2 ∪ 𝑆 1 ∪ 𝑌′ ∖ {𝑦3
′ }

𝑍 ⊆ 𝑌 ∪ 𝑌′

𝑒1
(1)

:

𝑒2
(1)

:

Encoding the clauses of 𝜑
𝑐 = 𝒙𝟑 ∨ ¬𝑥5 ∨ 𝑥8

𝐵1 ∪ 𝑆 ∖ 𝑆 1 ∪ 𝑌

𝐵2 ∪ 𝑆 1 ∪ 𝑌′ ∖ {𝒚𝟑
′ }

𝑍 ⊆ 𝑌 ∪ 𝑌′

set 𝒙𝟑 to true: 𝑍 does not contain 𝑦3
′

𝑒1
(1)

:

𝑒2
(1)

:

Encoding the clauses of 𝜑
𝑐 = 𝑥3 ∨ ¬𝒙𝟓 ∨ 𝑥8

𝐵1 ∪ 𝑆 ∖ 𝑆 2 ∪ 𝑌 ∖ 𝒚𝟓

𝐵2 ∪ 𝑆 2 ∪ 𝑌′

𝑍 ⊆ 𝑌 ∪ 𝑌′

set 𝒙𝟓 to false: 𝑍 does not contain 𝑦5

𝑒1
(2)

:

𝑒2
(2)

:

Encoding the clauses of 𝜑
𝑐 = 𝑥3 ∨ ¬𝑥5 ∨ 𝒙𝟖

𝐵1 ∪ 𝑆 ∖ 𝑆 3 ∪ 𝑌

𝐵2 ∪ 𝑆 3 ∪ 𝑌′ ∖ {𝒚𝟖
′ }

𝑍 ⊆ 𝑌 ∪ 𝑌′

set 𝒙𝟖 to true: 𝑍 does not contain 𝑦8
′

𝑒1
(3)

:

𝑒2
(3)

:

Intended Decomposition

• 𝑍𝑖 ⊆ 𝑌 ∪ 𝑌′

• Left to right:
𝒁𝒊 ∩ 𝒀 monotonically decreasing
𝒁𝒊 ∩ 𝒀′ monotonically increasing

• 𝑁 big enough, s.t. 𝒁𝒊 = 𝒁𝒊+𝟏 for some i
⇒ read off truth assignment at 𝒁𝒊

Roadmap

• 3 Problems: HOM, CSP, BCQ

• Hypergraphs and acyclicity

• Well-known width notions: tw, hw, ghw, fhw

• hw vs. ghw

• Tractable cases of ghw (and fhw) computation

• NP-hardness of the Check-problem for ghw and fhw

• A glimpse beyond fhw

Motivation

Best algorithm based on fhw (likewise ghw, hw, tw):

• Choose optimal tree T for Q

• Compute full CQ Qt for all t ∈Nodes(T)

• Run Yannakakis algorithm on the join tree

Motivation

Best algorithm based on fhw (likewise ghw, hw, tw):

• Choose optimal tree T for Q

• Compute full CQ Qt for all t ∈Nodes(T)

• Run Yannakakis algorithm on the join tree

Total time: = O(|Q| * Nfhw(Q)+ |Output|),

with N = max-size of relations

However, this is not optimal!

u z

x y

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

The 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

S(y,z),T(z,u)

K(u,x),R(x,y)

Tree T2=

ρ*=2

ρ*=2

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

S(y,z),T(z,u)

K(u,x),R(x,y)

Tree T2=

ρ*=2

ρ*=2

If we choose T1, then time = Ω(N2) on R=T=[N]×[1], S=K=[1]×[N]

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

S(y,z),T(z,u)

K(u,x),R(x,y)

Tree T2=

ρ*=2

ρ*=2

If we choose T1, then time = Ω(N2) on R=T=[N]×[1], S=K=[1]×[N]
If we choose T2, then time = Ω(N2) on R=T=[1]×[N], S=K=[N]×[1]

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

S(y,z),T(z,u)

K(u,x),R(x,y)

Tree T2=

ρ*=2

ρ*=2

Best runtime using traditional tree decompositions = O(N2)

If we choose T1, then time = Ω(N2) on R=T=[N]×[1], S=K=[1]×[N]
If we choose T2, then time = Ω(N2) on R=T=[1]×[N], S=K=[N]×[1]

fhw(Q)=2

u z

x yThe 4-Cycle Query

Q() = R(x,y),S(y,z),T(z,u),K(u,x)

R(x,y),S(y,z)

T(z,u),K(u,x)

Tree T1=

ρ*=2

ρ*=2

S(y,z),T(z,u)

K(u,x),R(x,y)

Tree T2=

ρ*=2

ρ*=2

Best runtime using traditional tree decompositions = O(N2)

If we choose T1, then time = Ω(N2) on R=T=[N]×[1], S=K=[1]×[N]
If we choose T2, then time = Ω(N2) on R=T=[1]×[N], S=K=[N]×[1]

fhw(Q)=2

u z

x yThe 4-Cycle Query

[Alon,Yuster,Zwick 1997] O(N3/2) algorithm for detecting a 4-cycle

General Framework for Defining Width

f-width:
• let 𝑓: 2𝑉 → 𝑅+

• f-width of a tree decomposition T: max(𝑓 𝐵𝑡 𝑡 ∈ 𝑉 𝑇 })

• f-width of a hypergraph H: =
minimum f-width over all tree decompositions of H

General Framework for Defining Width

f-width:
• let 𝑓: 2𝑉 → 𝑅+

• f-width of a tree decomposition T: max(𝑓 𝐵𝑡 𝑡 ∈ 𝑉 𝑇 })

• f-width of a hypergraph H: =
minimum f-width over all tree decompositions of H

𝑡𝑤 𝐻 = 𝑠-𝑤𝑖𝑑𝑡ℎ(𝐻) with 𝑠 𝐵 = 𝐵 − 1

𝑔ℎ𝑤 𝐻 = 𝜌𝐻-𝑤𝑖𝑑𝑡ℎ(𝐻) with 𝜌𝐻 𝐵 = edge cover number of B

𝑓ℎ𝑤 𝐻 = 𝜌𝐻
∗ -𝑤𝑖𝑑𝑡ℎ(𝐻) with 𝜌𝐻

∗ 𝐵 = fractional edge cover number of B

Remark: hw with the special condition is outside this framework

Duality of Linear Programs

• The dual of covering is independence.

• 𝑋 ⊆ 𝑉(𝐻) is independent, if 𝑒 ∩ 𝑋 ≤ 1 for every 𝑒 ∈ 𝐸 𝐻

• Φ: 𝑉 𝐻 → 0,1 is a fractional independent set (FIS),

if σ 𝑣∈e Φ 𝑣 ≤ 1 for every 𝑒 ∈ 𝐸 𝐻

Duality of Linear Programs

• The dual of covering is independence.

• 𝑋 ⊆ 𝑉(𝐻) is independent, if 𝑒 ∩ 𝑋 ≤ 1 for every 𝑒 ∈ 𝐸 𝐻

• Φ: 𝑉 𝐻 → 0,1 is a fractional independent set (FIS),

if σ 𝑣∈e Φ 𝑣 ≤ 1 for every 𝑒 ∈ 𝐸 𝐻

• The fractional independent set number 𝛼𝐻
∗ of H is the maximum

of σ 𝑣∈𝑉(𝐻) Φ 𝑣 over all fractional independent sets Φ of H.

• By duality of Linear Programs, we have 𝜌𝐻
∗ = 𝛼𝐻

∗

Adaptive Width (adw)
F-width:

• let F be a set of functions 𝑓: 2𝑉 → 𝑅+

• F-width of a tree decomposition T: sup({𝑓-width 𝐻 | 𝑓 ∈ 𝐹})

Adaptive Width (adw)
F-width:

• let F be a set of functions 𝑓: 2𝑉 → 𝑅+

• F-width of a tree decomposition T: sup({𝑓-width 𝐻 | 𝑓 ∈ 𝐹})

Adaptive width (adw) [Marx 2011]:

𝑎𝑑𝑤 𝐻 = F-width(H), where F = set of all FIS of H.

Adaptive Width (adw)
F-width:

• let F be a set of functions 𝑓: 2𝑉 → 𝑅+

• F-width of a tree decomposition T: sup({𝑓-width 𝐻 | 𝑓 ∈ 𝐹})

Adaptive width (adw) [Marx 2011]:

𝑎𝑑𝑤 𝐻 = F-width(H), where F = set of all FIS of H.

BCQtt-problem (= BCQ with truth tables)

BCQ answering problem, where the database is given as truth tables (i.e., relation
of arity k is given as set of all k-tuples over the domain with values true/false.

Adaptive Width (adw)
F-width:

• let F be a set of functions 𝑓: 2𝑉 → 𝑅+

• F-width of a tree decomposition T: sup({𝑓-width 𝐻 | 𝑓 ∈ 𝐹})

Adaptive width (adw) [Marx 2011]:

𝑎𝑑𝑤 𝐻 = F-width(H), where F = set of all FIS of H.

BCQtt-problem (= BCQ with truth tables)

BCQ answering problem, where the database is given as truth tables (i.e., relation
of arity k is given as set of all k-tuples over the domain with values true/false.

Theorem [Marx 2011]

Let C be a class of BCQs of bounded adaptive width.
Then the BCQtt-problem for C is in PTIME.

fhw vs. adw

Let F = set of all FIS of H and let G = set of fractional edge covers:

• 𝑓ℎ𝑤 𝐻 = 𝑚𝑖𝑛𝑇𝑚𝑎𝑥𝑡𝑚𝑖𝑛Ψ∈𝐺Ψ 𝐵𝑡 =

𝑚𝑖𝑛𝑇𝑚𝑎𝑥𝑡𝑚𝑎𝑥 Φ∈𝐹 Φ 𝐵𝑡

𝜌𝐻
∗ 𝐵𝑡 = 𝛼𝐻

∗ (𝐵𝑡)

fhw vs. adw

Let F = set of all FIS of H and let G = set of fractional edge covers:

• 𝑓ℎ𝑤 𝐻 = 𝑚𝑖𝑛𝑇𝑚𝑎𝑥𝑡𝑚𝑖𝑛Ψ∈𝐺Ψ 𝐵𝑡 =

𝑚𝑖𝑛𝑇𝑚𝑎𝑥𝑡𝑚𝑎𝑥 Φ∈𝐹 Φ 𝐵𝑡

• 𝑎𝑑𝑤 𝐻 = 𝑚𝑎𝑥 Φ∈𝐹 𝑚𝑖𝑛𝑇𝑚𝑎𝑥𝑡Φ(𝐵𝑡)

• Easy to check: 𝑎𝑑𝑤 𝐻 ≤ 𝑓ℎ𝑤(𝐻)

• Fact: bounded fhw does not imply bounded adw.

𝜌𝐻
∗ 𝐵𝑡 = 𝛼𝐻

∗ (𝐵𝑡)

Big difference! In adw, we are allowed to choose T after we see Φ

Towards Submodular-Width (subw)
Properties of fractional independent sets:

• non-negative: 𝑓: 2𝑉 → 𝑅+

• edge-dominated: 𝑓(𝑒) ≤ 1 for every e ∈ 𝐸(𝐻)

• modular: 𝑓 𝑋 + 𝑓 𝑌 = 𝑓 𝑋 ∪ 𝑌 + 𝑓 𝑋 ∩ 𝑌 for every X, Y ⊆ 𝑉 𝐻

• 𝑓 ∅ = 0

• (and therefore monotone)

Towards Submodular-Width (subw)
Properties of fractional independent sets:

• non-negative: 𝑓: 2𝑉 → 𝑅+

• edge-dominated: 𝑓(𝑒) ≤ 1 for every e ∈ 𝐸(𝐻)

• modular: 𝑓 𝑋 + 𝑓 𝑌 = 𝑓 𝑋 ∪ 𝑌 + 𝑓 𝑋 ∩ 𝑌 for every X, Y ⊆ 𝑉 𝐻

• 𝑓 ∅ = 0

• (and therefore monotone)

Relaxation:
• non-negative: 𝑓: 2𝑉 → 𝑅+

• edge-dominated: 𝑓 𝑒 ≤ 1 for every e ∈ 𝐸(𝐻)

• submodular: 𝑓 𝑋 + 𝑓 𝑌 ≥ 𝑓 𝑋 ∪ 𝑌 + 𝑓 𝑋 ∩ 𝑌 for every X, Y ⊆ 𝑉(𝐻)

• monotone: X ⊆ 𝑌 ⇒ 𝑓 𝑋 ≤ 𝑓 𝑌

• 𝑓 ∅ = 0

Submodular-Width (subw)

Submodular-width (subw) [Marx 2013]

𝑠𝑢𝑏𝑤 𝐻 = 𝐹-𝑤𝑖𝑑𝑡ℎ(𝐻), where F is the set of non-negative, monotone, edge-
dominated, submodular functions with 𝑓 ∅ = 0.

Submodular-Width (subw)

Submodular-width (subw) [Marx 2013]

𝑠𝑢𝑏𝑤 𝐻 = 𝐹-𝑤𝑖𝑑𝑡ℎ(𝐻), where F is the set of non-negative, monotone, edge-
dominated, submodular functions with 𝑓 ∅ = 0.

Theorem [Marx 2013]

Let C be a recursively enumerable class of hypergraphs. Then, assuming the
Exponential Time Hypothesis, BCQ(C) is fixed-parameter tractable with query
Q as parameter, if and only if C has bounded submodular-width.

BCQ (H) for a class H of hypergraphs.

BCQ-answering problem restricted to BCQs whose hypergraphs are in class H.

subw vs. adw vs. fhw
Easy observation

For every hypergraph H: 𝑎𝑑𝑤 𝐻 ≤ s𝑢𝑏𝑤(𝐻).
Immediate from the fact that subw is max over a bigger set than adw.

subw vs. adw vs. fhw
Easy observation

For every hypergraph H: 𝑎𝑑𝑤 𝐻 ≤ s𝑢𝑏𝑤 𝐻 .
Immediate from the fact that subw is max over a bigger set than adw.

Lemma [Marx 2013]

For every hypergraph H: s𝑢𝑏𝑤 𝐻 ≤ 𝑓ℎ𝑤 𝐻 .

Theorem [Marx 2013]

For every hypergraph H, we have s𝑢𝑏𝑤 𝐻 = 𝑂 𝑎𝑑𝑤 𝐻 4 .
Hence, a class C of hypergraphs has bounded subw iff it has bounded adw.

Current State of Affairs

• Relationship between various notions of width is well understood

• Boundary of tractability of the Check-problem

• Progress with computation of HDs, GHDs, and FHDs

• Precise characterization of FPT CQ-Answering

• Precise characterization of PTIME CQ-Answering for bounded arity

• Precise characterization of PTIME CQ-Answering for unbounded arity

• Further improvement of HD, GHD, and FHD computation

• Decomposition-based query answering vs. cost-based optimization

Future Work

References: Classics
• [Bodlaender, 1993] Hans L. Bodlaender: A linear time algorithm for finding tree-decompositions of

small treewidth. STOC 1993: 226-234

• [Chandra and Merlin 1977] Ashok K. Chandra and Philip M. Merlin: Optimal implementation of
conjunctive queries in relational data bases. STOC 1977: 77–90.

• [Feder and Vardi 1993] Tomás Feder, Moshe Y. Vardi: Monotone monadic SNP and constraint
satisfaction. STOC 1993: 612-622

• [Freuder, 1990] Eugene C. Freuder: Complexity of K-Tree Structured Constraint Satisfaction
Problems. AAAI 1990: 4-9

• [Kolaitis and Vardi, 1998]: Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Containment and
Constraint Satisfaction. PODS 1998: 205-213

• [Yannakakis 1981] Mihalis Yannakakis: Algorithms for Acyclic Database Schemes. VLDB 1981: 82-94

References: Width Notions

• [Abo Khamis, Ngo, Suciu 2017] Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu: What Do

Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One

Another? PODS 2017: 429-444

• [Adler, Gottlob, Grohe, 2007] Isolde Adler, Georg Gottlob, Martin Grohe: Hypertree width and

related hypergraph invariants. Eur. J. Comb. 28(8): 2167-2181 (2007)

• [Chekuri and Rajaraman 1997] Chandra Chekuri, Anand Rajaraman: Conjunctive Query

Containment Revisited. ICDT 1997: 56-70

• [Gottlob, Leone, Scarcello 1999] Georg Gottlob, Nicola Leone, Francesco Scarcello: Hypertree

Decompositions and Tractable Queries. PODS 1999: 21-32

• [Grohe 2007] Martin Grohe: The complexity of homomorphism and constraint satisfaction

problems seen from the other side. J. ACM 54(1): 1:1-1:24 (2007)

References: Width Notions (cont.)

• [Gottlob, Miklos, Schwentick 2007] Georg Gottlob, Zoltán Miklós, Thomas Schwentick:

Generalized hypertree decompositions: NP-hardness and tractable variants. PODS 2007: 13-22

• [Grohe and Marx 2006] Martin Grohe, Dániel Marx: Constraint solving via fractional edge covers.

SODA 2006: 289-298

• [Marx, 2010] Dániel Marx: Approximating fractional hypertree width. ACM Trans. Algorithms 6(2):

29:1-29:17 (2010)

• [Marx, 2011] Dániel Marx: Tractable Structures for Constraint Satisfaction with Truth Tables.

Theory Comput. Syst. 48(3): 444-464 (2011)

• [Marx 2013] Dániel Marx: Tractable Hypergraph Properties for Constraint Satisfaction and

Conjunctive Queries. J. ACM 60(6): 42:1-42:51 (2013)

References: Our Recent Works
• [Fischl, Gottlob, P., 2018] W.Fischl, G.Gottlob, R.Pichler: General and Fractional Hypertree

Decompositions: Hard and Easy Cases. PODS 2018: 17-32 (extended version in J. ACM, 2021)

• [Fischl, Gottlob, Longo, P., 2019] W.Fischl, G.Gottlob, D.Longo, R.Pichler: HyperBench: A

Benchmark and Tool for Hypergraphs and Empirical Findings. PODS 2019: 464-480

(full version in ACM J. Exp. Alg., 2021)

• [Gottlob, Lanzinger, P., Razgon, 2020] G.Gottlob, M.Lanzinger, R.Pichler, I.Razgon: Fractional

Covers of Hypergraphs with Bounded Multi-Intersection. MFCS 2020: 41:1-41:14

• [Gottlob, Okulmus, P., 2020] G.Gottlob, C.Okulmus, R.Pichler: Fast and Parallel Decomposition of

Constraint Satisfaction Problems. IJCAI 2020: 1155-1162.

• [Gottlob, Lanzinger, Okulmus, P., 2021] G.Gottlob, M.Lanzinger, C.Okulmus, R.Pichler: Fast Parallel

Hypertree Decompositions in Logarithmic Recursion Depth. PODS 2022: 325-336

