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Basics Relational Model Query Evaluation for FO Restrictions of FO

Welcome!

This course is intended for graduate students interested in getting deeper
into data management technologies: understanding the underlying theory.

I am a professor at the University of Washington, attending the SIMONS
institute Logic and Algorithms in Database Theory and AI, and the recipient
of the Theory of Computing Chancellor’s Professorship at UC Berkeley.

This course is a one-time offering.
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About

What this course is about: logic, complexity, algorithms, all related to
data management. There will be proofs in class.

What is course is not: a course on data science, data management, or
database systems.1

1Recommended: CS286: Graduate DB Systems in Spring 2024. (This is a natural
graduate-level follow-on to the undergrad CS186 class.)
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General Info

Lectures: Tue/Thu 11-12:20;
https://berkeley-cs294-248.github.io/

Workshops at the Simons Institute: weeks of 9/25, 10/16, 11/13.

Theory homework assignments – first one is already published.

Final report and presentation: the week of 12/4.
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Tentative Course Outline

Tue Thu Unit Topic Lecturer
8/29 8/31 U1 Logic and Queries.
9/5 9/7 U2 Basic Query Evaluation.
9/12 9/14 U3 Incremental View Maintenance Dan Olteanu
9/19 U4 AGM Bound

9/21 WCOJ Hung Ngo
9/25-9/29: WS 1: Fine-grained Complexity, Logic, Query Eval
10/3 10/5 U5 Database Constraints.
10/10 10/12 U6 Probabilistic databases
10/16-10/20: WS 2: Probabilistic Circuits and Logic
10/24 10/26 U7 Semirings, K-Relations. Val Tannen
10/31 U8 FAQ Hung Ngo

11/2 U9 Datalog, Chase.
11/7 11/9
11/13-11/17: WS 3: Logic and Algebra for Query Evaluation
. . . . . . TBD
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Final Report

Task: pick a theory problem/result and explain it to a wide audience.

Write a short report. Suggested length: 3-5 page.

Give a short presentation (10’), in class, probably on Tuesday 12/5.
Details TBD.
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Recommended Readings

The “Alice Book” [Abiteboul et al., 1995]

Libkin’s Finite Model Theory [Libkin, 2004]
A much shorter tutorial in PODS [Libkin, 2009].

New upcoming book on Database Theory [Arenas et al., 2022].
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Basic Definitions
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Structures

A vocabulary σ is a set of relation symbols R1, . . . ,Rk and function symbols
f1, . . . , fm, each with a fixed arity.

A structure is D = (D,RD
1 , . . . ,R

D
k , f

D
1 , . . . , f

D
m ),

where RD
i ⊆ (D)arity(Ri ) and f Dj : (D)arity(fj ) → D.

D = the domain or the universe; always assumed ̸= ∅.
v ∈ D is called an element or a value or a point.
D called a structure or a model or database.
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Examples

A graph is G = (V ,E ), E ⊆ V × V .

A field is F = (F , 0, 1,+, ·) where
F is a set.

0 and 1 are constants (i.e. functions F 0 → F ).

+ and · are functions F 2 → F .

An ordered set is S = (S ,≤) where ≤⊆ S × S .

A database is D = (Domain,Customer,Order,Product).
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Discussion

We don’t really need functions, since f : Dk → D is represented by its
graph ⊆ Dk+1, but we keep them when convenient.

If f is a 0-ary function D0 → D, then it is a constant D, and we
denote it c rather than f .

D can be a finite or an infinite structure.
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First Order Logic

Fix a vocabulary σ and a set of variables x1, x2, . . .

Terms:

Every constant c and every variable x is a term.

If t1, . . . , tk are terms then f (t1, . . . , tk) is a term.

Formulas:

F is a formula (means false).

If t1, . . . , tk are terms, then t1 = t2 and R(t1, . . . , tk) are formulas.

If φ,ψ are formulas, then so are φ→ ψ and ∀x(φ).
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Discussion

We were very frugal! We used only F ,→,∀.

In practice we use several derived operations:

¬φ is a shorthand for φ→ F .

φ ∨ ψ is a shorthand for (¬φ) → ψ.

φ ∧ ψ is a shorthand for ¬(φ ∨ ψ).
∃x(φ) is a shorthand for ¬(∀x(¬φ)).

F often denoted: false or ⊥ or 0.

= is not always part of the language
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Formulas and Sentences

We say that ∀x(φ) binds x in φ. Every occurrence of x in φ is bound.
Otherwise, it is free.

A sentence is a formula φ without free variables.

E.g. formula φ(x , z) = ∃y(E (x , y) ∧ E (y , z)). Free variables: x , z .

E.g. sentence φ = ∃x∀z∃y(E (x , y) ∧ E (y , z)).
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Truth

Let φ be a sentence, and D a structure

Definition

We say that φ is true in D, written D |= φ , if:

φ is c = c ′ and c , c ′ are the same constant.

φ is R(c1, . . . , cn) and (c1, . . . , cn) ∈ RD .

φ is ψ1 → ψ2 and D ̸|= ψ1, or D |= ψ1 and D |= ψ2.

φ is ∀y(ψ), and, forall b ∈ D, D |= ψ[b/y ].

This definition is boring but important!
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Special Case: Propositional Logic

A nullary relation, A(), is the same as a propositional variable:

In any structure D, AD can be either ∅ or {()}.
If AD = {()} then we say that AD is true.

If AD = ∅ then we say that AD is false.

Sentences over nullary predicates are the same as propositional formulas:

A() ∧ (B() ∨ ¬A())

A ∧ (B ∨ ¬A)
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What do these sentences say about D?

∃x∃y∃z(x ̸= y) ∧ (x ̸= z) ∧ (y ̸= z)

“There are at least three elements”, i.e. |D| ≥ 3

∃x∃y∀z(z = x) ∨ (z = y)

“There are at most two elements”, i.e. |D| ≤ 2
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What do these sentences say about D?

∀x∃yE (x , y) ∨ E (y , x)

“There are no isolated nodes”

∀x∀y∃zE (x , z) ∧ E (z , y)

“Every two nodes are connected by a path of length 2”

∃x∃y∃z(∀u(u = x) ∨ (u = y) ∨ (u = z))

∧¬E (x , x) ∧ E (x , y) ∧ ¬E (x , z)
∧¬E (y , z) ∧ ¬E (y , y) ∧ E (y , z)

∧E (z , x) ∧ ¬E (z , y) ∧ ¬E (z , z)

It completely determines the graph: D = {a, b, c} and a → b → c → a.
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Classical Model Theory

Fix a sentence φ, and a set of sentences Σ (may be infinite).

Satisfiability: Σ is satisfiable if ∃D such that D |= Σ. SAT(Σ).

Implication: Σ implies φ if ∀D, D |= Σ implies D |= φ. Σ |= φ.

Validity: φ is valid if ∀D, D |= φ. We write |= φ or VAL(φ).

¬SAT(φ) iff VAL(¬φ)
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Completeness, Undecidability

Gödels Completeness Thm: Σ |= φ iff there exists a finite proof Σ ⊢ φ.
Church’s Undecidability Thm: VAL is undecidable. Hence, so is SAT.

We will not discuss what a “proof” Σ ⊢ φ means.

There exists an algorithm that enumerates all valid sentences:
VAL = {φ0, φ1, φ2, . . .}

There exists an algorithm that enumerates all unsatisfiable sentences:
UNSAT = {φ0, φ1, φ2, . . .}

We say that VAL is recursively enumerable, r.e., and SAT is co-r.e.
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Finite Model Theory, Databases, Verification

All previous problems, where the models are restricted to be finite:

Finite satisfiability: SATfin(Σ).

Finite implication: Σ |=fin φ.

Finite validity: |=fin φ or VALfin(φ).

New problems that make sense only in the finite:

Model checking: Given φ, D, determine whether D |= φ.

Query evaluation: Given φ(x), D, compute {a | D |= φ[a/x ]}.
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Examples

F |= φ for any sentence φ why?.

Σ |= F iff Σ is unsatisfiable why?.

Is Φ
def
= (∀x∃yE (x , y)) ∧ (∀x1∀x2∀y(E (x1, y) ∧ E (x2, y) ⇒ x1 = x2))

satisfiable?
Every node has an outgoing edge, and at most one incoming edge
Yes: E.g. E = {(1, 2), (2, 3), (3, 1)}.

Is Φ ∧ (∃y∀x¬E (x , y)) (where Φ is defined above) satisfiable?
. . . and there exists a node with no incoming edge incoming edge
Yes: E = {(0, 1), (1, 2), (2, 3), . . .}
But Not satisfiable in the finite.
“Axioms of infinity” [Börger et al., 1997]

SATfin(φ) ⇒ SAT(φ)
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Finite v.s. Classical Model Theory

In relational databases we are interested in Finite Model Theory.

VALfin, SATfin differ from VAL, SAT.
Could VALfin, SATfin be decidable?

There is hope:

In classical model theory VAL is r.e., SAT is co-r.e.

In finite model theory SATfin is r.e. why?.
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Trakhtenbrot’s Undecidability Theorem

Theorem (Trakhtenbrot)

If the vocabulary includes at least one relation of arity ≥ 2, then SATfin is
undecidable. (We will prove it later.)

Therefore static analysis of arbitrary FO formulas is undecidable; same as
for Turing-complete programming languages. This justifies studying
fragments of FO, where static analysis is possible.

We will prove Trakthenbrot’s theorem later.

The condition at least one relation of arity ≥ 2 is necessary. See HW 1.
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Summary

Classical Model Theory:

Concerned with satisfiability, validity, provability.

Major, fundamental results: Gödel’s completeness; Church
undecidability; the Compactness Theorem; Löwenheim–Skolem; Gödel’s
incompleteness.

Finite Model Theory:

Concerned with similar questions, plus evaluation.

Major, fundamental results: Trakhtentbrot’s undecidability; Fagin’s
0/1-law; Fagin’s SO=NP theorem.
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Relational Model
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Origins

In 1970-1971 Tedd Codd proposed that databases should be modeled as
finite structures, and queries represented by formulas.

A decade of debates followed, where the relational data model had to
compete against the established CODASYL model.

This story is now the founding legend, par of the folklore of our community.
A great reading is What Goes Around Comes Around in [Bailis et al., 2015].
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Relational Databases

Fix the schema (vocabulary): R1,R2, . . ..

A relational database instance is a finite structure D = (D,RD
1 ,R

D
2 , . . .)

We often omit the domain and write D = (RD
1 ,R

D
2 , . . .).

The active domain, ADom(D), is the set of constants that occur in
RD
1 ,R

D
2 , . . .

A query, Q(x), is an FO formula with free variables x . We write (with some
overloading) Q(D) for the result of Q on a database D.
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The Drinkers-Beer-Bar Example

Introduced by [Ullman, 1980].

Frequents(Drinker,Bar)

Serves(Bar,Beer)

Likes(Drinker,Beer)

Drinkers who frequent some bar who serve some beer that they like:

Q(x) = ∃y∃z(Frequents(x , y) ∧ Serves(y , z) ∧ Likes(x , z))

Drinkers who frequent only bars who serve only beers that they like:

Q(x) = ∀y(Frequents(x , y) ⇒ ∀z(Serves(y , z) ⇒ Likes(x , z)))

The last query is incorrect!

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 29 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

The Drinkers-Beer-Bar Example

Introduced by [Ullman, 1980].

Frequents(Drinker,Bar)

Serves(Bar,Beer)

Likes(Drinker,Beer)

Drinkers who frequent some bar who serve some beer that they like:

Q(x) = ∃y∃z(Frequents(x , y) ∧ Serves(y , z) ∧ Likes(x , z))

Drinkers who frequent only bars who serve only beers that they like:

Q(x) = ∀y(Frequents(x , y) ⇒ ∀z(Serves(y , z) ⇒ Likes(x , z)))

The last query is incorrect!

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 29 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

The Drinkers-Beer-Bar Example

Introduced by [Ullman, 1980].

Frequents(Drinker,Bar)

Serves(Bar,Beer)

Likes(Drinker,Beer)

Drinkers who frequent some bar who serve some beer that they like:

Q(x) = ∃y∃z(Frequents(x , y) ∧ Serves(y , z) ∧ Likes(x , z))

Drinkers who frequent only bars who serve only beers that they like:

Q(x) = ∀y(Frequents(x , y) ⇒ ∀z(Serves(y , z) ⇒ Likes(x , z)))

The last query is incorrect!

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 29 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

The Drinkers-Beer-Bar Example

Introduced by [Ullman, 1980].

Frequents(Drinker,Bar)

Serves(Bar,Beer)

Likes(Drinker,Beer)

Drinkers who frequent some bar who serve some beer that they like:

Q(x) = ∃y∃z(Frequents(x , y) ∧ Serves(y , z) ∧ Likes(x , z))

Drinkers who frequent only bars who serve only beers that they like:

Q(x) = ∀y(Frequents(x , y) ⇒ ∀z(Serves(y , z) ⇒ Likes(x , z)))

The last query is incorrect!

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 29 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

Domain Independence

The last query is actually incorrect! Let’s look at a simpler query:

Q(x) = ∀y(R(x , y) ⇒ S(x , y))

Recall the “boring” definition: if c ∈ D, c ̸∈ Πx(R
D) then Q(c) is true.

Q returns values c that are not in the active domain; domain dependent.

Definition

An FO formula (query) is domain independent if it does not depend on the
domain D of the structure (D,RD

1 ,R
D
2 , . . .).

Are these queries independent?
Q(x , y) = R(x) ∨ S(y) Domain dependent.

Q(x) = R(x) ∧ ∃y(¬S(x , y)) Domain dependent.
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Domain Independence

Given a formula φ, how do we check whether it is domain independent?

Theorem

Checking domain independence is undecidable.

Proof Assuming an algorithm for checking domain independence, we solve
SATfin, which contradicts Trakhtenbrot’s theorem:

Fix some domain-dependent query, say φ = ∀xR(x).

Given an FO sentence Φ, construct a new sentence ψ
def
= Φ ∧ φ.

Then ψ is domain independent iff Φ is unsatisfiable.

Syntactic restriction: Q is range-restricted if each var is restricted to (a
subset of) ADom:

Q(x) = ∃u(R(x , u) ∨ S(x , u))
∧
(∀y(R(x , y) ⇒ S(x , y)))
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Relational Algebra – Quick Review
Five operators:

Selection σ

Projection Π

Join ▷◁

Union ∪
Difference −

Who likes Leffe?

Q1(x) = Likes(x , ’Leffe’)

Πx

σy=’Leffe’

Likes(x,y)

Q2(x , y , z) = Frequents(x , y)∧Serves(y , z)∧Likes(x , z)
⋊⋉

Frequents(x , y) ⋊⋉

Serves(y , z) Likes(x , z)

Q3(x) = A(x) ∧ ∀y(B(y) ⇒ C(x , y))
Q3(x) = A(x) ∧ ¬∃y(B(y) ∧ ¬C(x , y))

−

A(x) −

×

A(x) B(y)

C(x , y)

Easier with an anti-semijoin (look it up).
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Basics Relational Model Query Evaluation for FO Restrictions of FO

FO and RA are Equivalent

Theorem

Domain-independent FO and Relational Algebra express the same class of
queries.

Proof: exercise.

Physical independence principle: separation of What from How.

Users write what they want, in a declarative language (FO).

System decides how to compute the query most efficiently (RA plan).
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Summary

Relational data model is founded on finite model theory.

Physical Data Independence is perhaps the deepest reason why it is
still successful 50 years later: separate the What from the How.

What is in FO. But too abstract for the real world (e.g. domain
independence!), hence SQL and its history.

Why is RA. But too limited for the real world, hence extended with
aggregates, group-by, dependent joins, anti-semijoins, etc, etc.

FO used in databases beyond query expressions: for constraints,
optimization rules, verification.
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The Query Evaluation Problem
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Complexity

A Turing-complete language can express any
computable problem.

But FO is restricted. What is the complexity
of the problems it can express?

First, we are interested in the complexity class.
Later we will study efficient algorithms.

PSPACE

NP

PTIME
LOGSPACE

AC0
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The Query Evaluation Problem

Given a query Q and a database instance D, compute Q(D).
This is the bread-and-butter of database engines.

Definition (Complexity of Query Evaluation [Vardi, 1982])

Three ways to define the complexity:

Data Complexity. Fix the query Q, complexity is f (|D|).
Query Complexity. Fix the database D, complexity is f (|Q|).
A.k.a. expression complexity.

Combined Complexity, f (|Q|, |D|).

Which is most important in practice?
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Data Complexity of FO is in AC0

Theorem

The Data Complexity of FO is in AC0

(Stronger: it is in uniform AC0, but we will ignore this.)

Recall that AC0 is at the bottom of the hierarchy:
AC 0 ⊆ LOGSPACE ⊆ · · · ⊆ PTIME

Before we prove the theorem let’s prove something simpler:
The Data Complexity of FO is in PTIME.
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Data Complexity of FO is in PTIME: Proof

How do we evaluate this? Q = ∃x (A(x) ∧ ∀y(B(y) ⇒ C (x , y)))

some x = false;
for x = 1,N do:

if A(x) then:
all y = true
for y = 1,N do:

if not (B(y) => C(x,y))
then: all y = false;

if all y then: some x = true;
return some x

Generalizes to any sentence φ.

Runtime O(Nk), where:
N = |ADom|
k = |Vars(φ)|
In PTIME (and in LOGSPACE),
for fixed φ.

Many texts state that the data complexity is in LOGSPACE, or in PTIME.
The correct complexity is AC0. Let’s prove it
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The correct complexity is AC0. Let’s prove it
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Basics Relational Model Query Evaluation for FO Restrictions of FO

Definition of AC0

Definition

A problem is in AC0 if ∀N, there exists a circuit of polynomial size and
constant depth, consisting NOT gates and unbounded fan-in AND and OR
gates, that computes the problem on inputs of size N encoded using N bits.

E.g. Given an undirected graph with n nodes, check if it has a triangle.
When n = 4 there are N = 6 possible edges, Eij for 1 ≤ i < j ≤ 4

(E12 ∧ E23 ∧ E13) ∨ (E12 ∧ E24 ∧ E14) ∨ (E23 ∧ E34 ∧ E24) ∨ (E34 ∧ E14 ∧ E13)

OR

AND

E12 E23 E13

AND

E12 E24 E14

AND

E23 E34 E24

AND

E34 E14 E13

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 40 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

Definition of AC0

Definition

A problem is in AC0 if ∀N, there exists a circuit of polynomial size and
constant depth, consisting NOT gates and unbounded fan-in AND and OR
gates, that computes the problem on inputs of size N encoded using N bits.

E.g. Given an undirected graph with n nodes, check if it has a triangle.

When n = 4 there are N = 6 possible edges, Eij for 1 ≤ i < j ≤ 4

(E12 ∧ E23 ∧ E13) ∨ (E12 ∧ E24 ∧ E14) ∨ (E23 ∧ E34 ∧ E24) ∨ (E34 ∧ E14 ∧ E13)

OR

AND

E12 E23 E13

AND

E12 E24 E14

AND

E23 E34 E24

AND

E34 E14 E13

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 40 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

Definition of AC0

Definition

A problem is in AC0 if ∀N, there exists a circuit of polynomial size and
constant depth, consisting NOT gates and unbounded fan-in AND and OR
gates, that computes the problem on inputs of size N encoded using N bits.

E.g. Given an undirected graph with n nodes, check if it has a triangle.
When n = 4 there are N = 6 possible edges, Eij for 1 ≤ i < j ≤ 4

(E12 ∧ E23 ∧ E13) ∨ (E12 ∧ E24 ∧ E14) ∨ (E23 ∧ E34 ∧ E24) ∨ (E34 ∧ E14 ∧ E13)

OR

AND

E12 E23 E13

AND

E12 E24 E14

AND

E23 E34 E24

AND

E34 E14 E13

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 40 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

Definition of AC0

Definition

A problem is in AC0 if ∀N, there exists a circuit of polynomial size and
constant depth, consisting NOT gates and unbounded fan-in AND and OR
gates, that computes the problem on inputs of size N encoded using N bits.

E.g. Given an undirected graph with n nodes, check if it has a triangle.
When n = 4 there are N = 6 possible edges, Eij for 1 ≤ i < j ≤ 4

(E12 ∧ E23 ∧ E13) ∨ (E12 ∧ E24 ∧ E14) ∨ (E23 ∧ E34 ∧ E24) ∨ (E34 ∧ E14 ∧ E13)

OR

AND

E12 E23 E13

AND

E12 E24 E14

AND

E23 E34 E24

AND

E34 E14 E13

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 40 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

Definition of AC0

Definition

A problem is in AC0 if ∀N, there exists a circuit of polynomial size and
constant depth, consisting NOT gates and unbounded fan-in AND and OR
gates, that computes the problem on inputs of size N encoded using N bits.

E.g. Given an undirected graph with n nodes, check if it has a triangle.
When n = 4 there are N = 6 possible edges, Eij for 1 ≤ i < j ≤ 4

(E12 ∧ E23 ∧ E13) ∨ (E12 ∧ E24 ∧ E14) ∨ (E23 ∧ E34 ∧ E24) ∨ (E34 ∧ E14 ∧ E13)

OR

AND

E12 E23 E13

AND

E12 E24 E14

AND

E23 E34 E24

AND

E34 E14 E13

Dan Suciu Topics in DB Theory: Unit 1 Fall 2023 40 / 51



Basics Relational Model Query Evaluation for FO Restrictions of FO

Data Complexity FO is in AC0: Proof

Fix a Boolean query Q in FO. Encode the input database D using bits:

Let N = |ADom(D)|.

Encode a relation of arity k using Nk bits.
E.g. R(X ,Y ) encoded using Boolean matrix Rij .

Expand Q into a Boolean formula ΦQ,D , called the lineage of Q on D.

Represent ΦQ,D using an AC0 circuit.

Example: Q = ∃x (A(x) ∧ ∀y(B(y) ⇒ C (x , y)))

Its lineage is: ΦQ,D =
∨

i=1,N

(
Ai ∧

∧
j=1,N (¬Bj ∨ Cij)

)
In class: construct a circuit of depth 5 and size O(N2).
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Summary

Data complexity is in AC0; this implies LOGSPACE, PTIME.

Expression complexity, combined complexity: PSPACE complete
We will discuss this later.

AC0 is the class of highly parallelizable problems.

“SQL is embarrassingly parallel”
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Restricted Query Languages
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Motivation

FO is too rich for powerful optimizations: Trakhtenbrot’s theorem is a
fundamental limit.

For fragments of FO static analysis is possible, and they still capture
the most important queries in practice.

Assuming FO consists of ∃, ∀,∧,∨,¬,=, we will obtain fragments by
restricting the connectives.
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Basics Relational Model Query Evaluation for FO Restrictions of FO

Conjunctive Queries

Definition

A Conjunctive Query (CQ) is an expression of the form:

Q(x0) = ∃y
∧

i Ri (xi )

E.g. Q(x , y) = ∃z(E (x , z) ∧ E (z , y)).

Equivalently: FO formula restricted to =,∧,∃ What fragment of RA?

CQ has the same expressive power as RA restricted to σ,Π,⋊⋉.

These correspond to SELECT-DISTINCT-FROM-WHERE queries in
SQL (but we have to be careful what we allow in each clause).
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Basics Relational Model Query Evaluation for FO Restrictions of FO

Unions of Conjunctive Queries

Definition

A Union of Conjunctive Queries (UCQ) is a formula of the form:

Q(x) =
∨

i Qi (x)
where all Qi ’s are CQs, and have the same sets of free variables.

E.g. Q(x , y) = E (x , y)
∨
∃z(E (x , z) ∧ E (z , y)).

Equivalently, UCQs are FO formulas restricted to =,∧,∃,∨.

UCQ has the same expressive power as RA restricted to σ,Π,⋊⋉,∪.
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Monotone Queries

Given two databases D,D ′ over the same schema, we write D ⊆ D ′ if
RD
i ⊆ RD′

i for every relation Ri in the schema.

Definition

A query Q is monotone if D ⊆ D ′ implies Q(D) ⊆ Q(D ′).

Example: ∃x , y , z(E(x , y) ∧ E(y , z)) Non-example: ∃xV (x) ∧ ∀y(V (y) ⇒ E(x , y))

All UCQ queries are monotone. Exercise

The only non-monotone operators are:

negation ¬ in FO.

difference − in RA.
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Other Ways to Restrict the Query Language (1/2)

Adding ̸=, <,≤ to CQ, UCQ:

By default they are not allowed in CQ, UCQ.

If we want them, we write e.g. CQ ̸= or UCQ≤.

Q(x , y) = ∃u∃v (E (x , u) ∧ E (u, v) ∧ E (v , y) ∧ x ̸= u ̸= v ̸= y).

Is this query monotone?

YES!
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Other Ways to Restrict the Query Language (2/2)

Restricting the number of variables in FO:

FOk : restricted to using only k variables.

E.g. check in FO2 if there a path of length ≥ 5:
∃x∃y(E (x , y) ∧ ∃x(E (y , x) ∧ ∃y(E (x , y) ∧ ∃x(E (y , x)))))

Theorem ([Grädel et al., 1997])

If φ ∈ FO2 has any model (possibly infinite), then it has a model of size at
most exponential in |φ|. Thus, SATfin(FO2) is decidable.

Suggested research: what are the implications for a query optimizer?

What about FO3?

To watch how many variables we need to prove Trakhtenbrot’s theorem
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Conjunctive Queries

Are the most important and most studied fragment. Terminology:

Boolean query: no head vars: Q() = ∃x∃y∃z(E (x , y) ∧ E (y , z)).

Full query: no existential vars: Q(x , y , z) = E (x , y) ∧ E (y , z).

Without selfjoins: every relation name occurs at most once.

Q(x) = ∃y∃z(R(x , y) ∧ S(y , z) ∧ T (z , x)).

We often omit the existential quantifiers, and write for example:

Q(x) = R(x , y) ∧ S(y , z) ∧ T (z , x).
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Summary

Most of our discussion will be focused on CQ’s.

UCQs come almost for free, or with very little additional effort.

Let’s re-examine query evaluation when the query is restricted to a CQ.
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