(CS294-248 Special Topics in Database Theory
Unit 5 (Part 2): Database Constraints

Dan Suciu

University of Washington



Outline

@ Classical constraints: FDs, MVDs, Cls

@ The basics, and a modern approach
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Functional Dependencies
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Functional Dependencies

Fix a relation schema R(X).

A Functional Dependency, FD, is an expression U — V for U,V C X.

We say that an instance RP satisfies the FD o, and write RP E o, if:

Vi, eRP: tU=tU=tVv =tV

If ¥ is a set of FDs, then we write RP =¥ if RP = ¢ for all o0 € ¥.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023
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Example

Then:
XYl Z RPEX =Y,
123 [ 12 | 23 X 7
3213221 ’
125 | 12 | 25 X—=YZ,
3233223 YZ = X
637 | 63 | 37
283 | 28 | 83 But:

RP Y — X
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The Implication Problem

We say that a set of FDs ¥ implies and FD o if YRP, RP = ¥ implies
RP = 0.

YEo
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The Implication Problem

We say that a set of FDs ¥ implies and FD o if YRP, RP = ¥ implies
RP = 0.

YEo

Example: AB — C,CD — E = ABD — E.
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The Implication Problem

We say that a set of FDs ¥ implies and FD o if YRP, RP = ¥ implies
RP = 0.

YEo

Example: AB — C,CD — E = ABD — E.

A B C D E

?
Proof: | 2 b v d 7
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Armstrong’'s Axioms

Many minor variations. My favorite:

Trivial: = UV — U
Transitivity: U >V, VW EU—- W
Splitting/combining: U — VW iff U — V, U — W

However, cumbersome to use: Can we check ¥ = ¢ in PTIME?

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023
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The Closure Operator

Fix ¥. The closure of a set U is| U+ %' {Z|TEU-—Z}

Note that X is implicit in defining U™.

Databases 101 (to discuss in class):

@ Given U, one can compute the closure U™ in PTIME
oYU VIffVCU™".

e Example: X = {AB — C,CD — E};
ADT =7

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 8/34
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The Closure Operator

Fix ¥. The closure of a set U is| U+ %' {Z|TEU-—Z}

Note that X is implicit in defining U™.

Databases 101 (to discuss in class):

@ Given U, one can compute the closure U™ in PTIME
oYU VIffVCU™".

e Example: X = {AB — C,CD — E};
ADT =7 AD
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The Closure Operator

Fix ¥. The closure of a set U is| U+ %' {Z|TEU-—Z}

Note that X is implicit in defining U™.

Databases 101 (to discuss in class):

@ Given U, one can compute the closure U™ in PTIME
oYU VIffVCU™".

e Example: X = {AB — C,CD — E};
ADT =7 AD ABDT =7
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The Closure Operator

Fix ¥. The closure of a set U is| U+ %' {Z|TEU-—Z}

Note that X is implicit in defining U™.

Databases 101 (to discuss in class):

@ Given U, one can compute the closure U™ in PTIME
oYU VIffVCU™".

e Example: X = {AB — C,CD — E};
AD" =7 AD ABD" =? ABCD.
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2-Tuple Relation

Fact
If X [~ o then there exists a 2-tuple relation R s.t. R =X and R £~ o. J

Example: AB — C,CD — E |~ CD — A.

Find a counterexample with 2 tuples (use values 0,1):

A/ B|C|D|E
R=|7]71]7

~
~
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2-Tuple Relation

Fact
If X [~ o then there exists a 2-tuple relation R s.t. R =X and R £~ o. J

Example: AB — C,CD — E |~ CD — A.

Find a counterexample with 2 tuples (use values 0,1): CD* = CDE

Al B|C|D|E
R=|0[{0]0
111(]0|010

o
o
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2-Tuple Relation

Fact
If X [~ o then there exists a 2-tuple relation R s.t. R =X and R £~ o. J

Example: AB — C,CD — E |~ CD — A.

Find a counterexample with 2 tuples (use values 0,1): CD* = CDE

Al B|C|D|E
R=|0{0]0]0]O
111(]0|010

To refute U — V: Tuple 1: (0,0,...,0), Tuple 2: Ut :=0, rest := 1.
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Armstrong Relation

@ We can refute a single implication ¥ |= o using a 2-tuple relation.

@ Armstrong relation for X is a relation Ry that refutes all FDs not
implied by ¥.

e Equivalently, ¥ F o iff Ry = o.

@ The construction of Ry is more interesting that the application. Next.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 10/34



The Direct Product

[Fagin, 1982]
The direct product® of two tuples t = (ay,...,a,) and t' = (by,..., b,) is:

t@t & (a1, b), ..., (am bn))

'A k.a. domain product.
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The Direct Product

[Fagin, 1982]
The direct product! of two tuples t = (a1, ...,a,) and t' = (b1, ..., by) is:

t@t & (a1, b), ..., (am bn))

Notice: the domain of t ® t’ is the cartesian product of domains of t and t'.

'A k.a. domain product.
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The Direct Product

[Fagin, 1982]
The direct product! of two tuples t = (a1, ...,a,) and t' = (b1, ..., by) is:

t@t & (a1, b), ..., (am bn))

Notice: the domain of t ® t’ is the cartesian product of domains of t and t'.

The direct product of two relations R(X), R'(X) (same attributes!) is
ReR E{tot |teR t R}

'A k.a. domain product.
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Example: Cartesian Product v.s. Direct Product

ATB X\;Z
T=[1]5 s=|? ¢
116 flbl|d
aleld
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Example: Cartesian Product v.s. Direct Product

A B|IIX|Y|Z

Al B XZZ 1|51 a|b|c

T=[1]5 S:f,b; TxS=|1|6a|b|c

1|6 1|5 f|b|d
alel|d

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 12/34
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AIBI|X|Y|Z
A|B XZZ 1/5|la|b|c
T=[1]5 S:f,b; TxS=|1|6|al|b]|c
116 1|5 Ff|b|d

aleld

X|Y|Z
R=|1]|5|m
116 |m
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ATB X Z V4
1[5 s=| 2 y TxS=
116 flb|d
alel|d
XY |Z
115 |m R®S =
116 |m
Dan Suciu Topics in DB Theory: Unit 5(2)

Conditional Independence

Connection to Entrop

A B|IIX|Y|Z
1/5|la|b|c
1|16 al|b|c
1|5 Ff|b|d
X|Y| Z
la |5b | mc
la|6b | mc
2a | 6b| nc
1f | 5b | md
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ATE X|lY|Z
alb|c
T=|1|5 S = TxS=
1ls flb|d
alel|d
XY |Z
R=|1]|5|m RS =
116 | m

Connection to Entrop

A B|IIX|Y|Z
1/5|la|b|c
1|16 al|b|c
1|5 Ff|b|d
X|Y| Z
la |5b | mc
la|6b | mc
2a | 6b| nc
1f | 5b | md

Given prob. distributions with entropies hg, hs, what is hres?

In class.

Dan Suciu Topics in DB Theory: Unit 5(2)
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ATE X|lY|Z
alb|c
T=|1|5 S = TxS=
1ls flb|d
alel|d
XY |Z
R=|1]|5|m RS =
116 | m

Connection to Entropy

Given prob. distributions with entropies hg, hs, what is hggs?

In class. hg + hs (sum of two vectors).

ht, hs cannot be added, since they have 22,23 dimensions.

Dan Suciu Topics in DB Theory: Unit 5(2)

A B|IIX|Y|Z
1/5|la|b|c
1|16 al|b|c
1|5 Ff|b|d
X|Y| Z
la |5b | mc
la|6b | mc
2a | 6b| nc
1f | 5b | md

Fall 2023
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Armstrong'’s Relation

Lemma
Forany FD o, R R'Eciff R=o and R’ Eo. J

Proof in class (it's straightforward).

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 13/34
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Armstrong'’s Relation

Lemma
Forany FD o, R R'Eciff R=o and R’ Eo.

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)

For any set of FDs ¥ there exists Ry s.t., for any FD o, ¥ |= o iff Ry |= O'.J
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Armstrong'’s Relation

Lemma
Forany FD o, R R'Eciff R=o and R’ Eo. J

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)
For any set of FDs ¥ there exists Ry s.t., for any FD o, ¥ |= o iff Ry |= O'.J

Proof Let o;,i = 1, n be all FDs not implied by ¥.
Since X £ o}, there exists a 2-tuple R; such that R; =X and R; £~ 0.
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Armstrong'’s Relation

Lemma
Forany FD o, R R'Eciff R=o and R’ Eo. J

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)
For any set of FDs ¥ there exists Ry s.t., for any FD o, ¥ |= o iff Ry |= O'.J

Proof Let o;,i = 1, n be all FDs not implied by ¥.
Since X £ o}, there exists a 2-tuple R; such that R; =X and R; £~ 0.

Then Ry def R ® - - - ® R, satisfies the theorem. Why?
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Armstrong'’s Relation

Lemma
Forany FD o, R R'Eciff R=o and R’ Eo. J

Proof in class (it's straightforward).

Theorem (Armstrong's Relation)
For any set of FDs ¥ there exists Ry s.t., for any FD o, ¥ |= o iff Ry |= O'.J

Proof Let o;,i = 1, n be all FDs not implied by ¥.

Since X £ o}, there exists a 2-tuple R; such that R; =X and R; £~ 0.
Then Ry def R1 ® --- ® R, satisfies the theorem. Why?
How large is Ry?

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 13/34
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Discussion

Next:

@ Defining the FDs is equivalent to defining the closure operator UT.

@ In turn, this is equivalent to defining the closed sets, i.e. those that
satisfy U = U™,

@ And this is equivalent to defining the lattice of closed elements.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 14 /34
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The Closure Operator: Properties

Monotone: If U C V, then UT C VT.

Expansive: U C Ut

|dempotent: (UT)t = U*

Wikipedia calls these properties increasing, extensive, idempotent.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023
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Why??

Why??
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Discussion

The closure operator, and its associated closure system occur in many areas
of math and CS.

o For any subset S C R, its linear span, span(S), is the smallest vector
space containing S; span is a closure operator.

@ For any subset S C RY, let convex(S) C RY be its convex closure;
convex is a closure operator.

@ The topological closure of a subset S C R is the set S consisting of
all limits lim, x,, where the sequence x, is in S.

@ Fix an algebra A. The algebra generated by a subset S is the smallest
sub-algebra containing S.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 16 /34
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Detour: Closure Operators

Fix a set 2.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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Connection to Entrop

Detour: Closure Operators
Fix a set .

Definition (Closure Operator)

A closure operator is ¢/ : P(Q2) — P(R) that is:
@ monotone A C B = c/(A) C cl(B)
@ expansive A C c/(A)
@ idempotent c/(cl(A)) = cl(A)

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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Conditional Independence

Connection to Entrop

Detour: Closure Operators
Fix a set .

Definition (Closure Operator)

A closure operator is ¢/ : P(Q2) — P(R) that is:
@ monotone A C B = c/(A) C cl(B)
@ expansive A C c/(A)
@ idempotent c/(cl(A)) = cl(A)

Definition (Closure System)
A closure system is C C P() s.t.
@ forany SCC, NS eC.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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(;x‘,:»‘l‘v:r‘?;t,Lu,»lv to Entrop:
Detour: Closure Operators

Fix a set 2.

Definition (Closure Operator)

A closure operator is ¢/ : P(Q) — P(RQ) that is: Definition (Closure System)
@ monotone A C B = cl(A) C cl(B)
@ expansive A C c/(A)
@ idempotent cl(cl(A)) = cl(A)
Equivalence

A closure system is C C P() s.t.
@ forany SCC, NS eC.

e Given C, cl(A) o ({X € C | AC X} is a closure operator.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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Connection to Entropy

Detour: Closure Operators

Fix a set 2.

Definition (Closure Operator)

A closure operator is ¢/ : P(Q) — P(RQ) that is: Definition (Closure System)
@ monotone A C B = cl(A) C cl(B)
@ expansive A C c/(A)
@ idempotent cl(cl(A)) = cl(A)
Equivalence

A closure system is C C P() s.t.
@ forany SCC, NS eC.

e Given C, cl(A) o ({X € C | AC X} is a closure operator.

o Given ¢/, C % {X | cl(X) = X} is a closure system.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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Connection to Entropy

Detour: Closure Operators

Fix a set 2.

Definition (Closure Operator)

A closure operator is ¢/ : P(Q) — P(RQ) that is: Definition (Closure System)
@ monotone A C B = cl(A) C cl(B)
@ expansive A C c/(A)
@ idempotent cl(cl(A)) = cl(A)
Equivalence

A closure system is C C P() s.t.
@ forany SCC, NS eC.

e Given C, cl(A) o ({X € C | AC X} is a closure operator.

o Given ¢/, C % {X | cl(X) = X} is a closure system.

Proof: We check that A % (S isin C, for any set S C C:

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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Detour: Closure Operators

Fix a set 2.

Definition (Closure Operator)

A closure operator is ¢/ : P(2) — P(R2) that is: Definition (ClOSUFe System)
@ monotone A C B = c/(A) C c/(B) A closure system is C C P(Q) s.t.

@ expansive A C cl(A) @ forany SCC,S eC.
@ idempotent cl(cl(A)) = cl(A)
Equivalence

e Given C, cl(A) o ({X € C | AC X} is a closure operator.

o Given ¢/, C % {X | cl(X) = X} is a closure system.
Proof: We check that A % (S isin C, for any set S C C:
cd(A)=c(({X| X eS}) CclX)forall X €S.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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Detour: Closure Operators

Fix a set 2.

Definition (Closure Operator)

A closure operator is ¢/ : P(2) — P(R2) that is: Definition (C|OSU re System)
@ monotone A C B = c/(A) C c/(B) A closure system is C C P(Q) s.t.

@ expansive A C cl(A) @ forany SCC,S eC.
@ idempotent cl(cl(A)) = cl(A)
Equivalence

e Given C, cl(A) o ({X € C | AC X} is a closure operator.

o Given ¢/, C % {X | cl(X) = X} is a closure system.

Proof: We check that A % (S isin C, for any set S C C:
cd(A)=c(({X| X eS}) CclX)forall X €S.
Therefore cl(A) C ({X | X € S} = A.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 17 /34
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From FDs to the Lattice of Closed Sets

A set of FDs for R(X) is equivalent to as closure system on X.

Moreover, a closure system C forms a lattice, (C, A, V):

XAY Exny XVvy E(xuy)*

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 18/34
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From FDs to the Lattice of Closed Sets

A set of FDs for R(X) is equivalent to as closure system on X.

Moreover, a closure system C forms a lattice, (C, A, V):
XAY Exny XVvy E(xuy)*

Example: YU — X, XZ — U
XYZU
/ I \

XYU YZ XZU

?

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 18/34
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Discussion

@ Functional dependencies are a key concept in CS, beyond databases.

@ In databases, the have two traditional applications:

» Database normalization: BCNF, 3NF
» Keys/foreign keys; “semantic pointers”

@ More recent applications: discover FDs from data, approximate FDs,
repairing for FDs (data imputation).

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 19/34
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Multivalued Dependencies
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Conditional Independence

Relation Decomposition
Take a relation R, partition its variables into U, V, W.
Instead of storing R(U, V', W) we store its projections:

Ri(U, V) E Myy(R), Ra(U, W) & Nyw (R)

Can we always recover R from Ry X R»?

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023
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Relation Decomposition

Take a relation R, partition its variables into U, V, W.

Instead of storing R(U, V', W) we store its projections:

Ri(U, V) E Myy(R), Ra(U, W) & Nyw (R)

Can we always recover R from Ry X R»? NO! In general R C Ry X R».
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MVDs Conditional Independence

Relation Decomposition

Take a relation R, partition its variables into U, V, W.

Instead of storing R(U, V', W) we store its projections:

Ri(U, V) E Myy(R), Ra(U, W) & Nyw (R)

Can we always recover R from Ry X R»? NO! In general R C Ry X R».

Lossless decomposition: when R = R; X R».

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 21/34
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Relation Decomposition

Take a relation R, partition its variables into U, V, W.

Instead of storing R(U, V', W) we store its projections:

Ri(U, V) E Myy(R), Ra(U, W) & Nyw (R)

Can we always recover R from Ry X R»? NO! In general R C Ry X R».
Lossless decomposition: when R = R; X R».

Fact If U — V holds then the decomposition is lossless. This is the basis
of database normalization (BCNF, 3NF).

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 21/34
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Multivalued Dependency

A multivalued dependency is U — V.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 22 /34
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Multivalued Dependency

A multivalued dependency is U — V.

A relation R(U, V, W) satisfies the MVD, if:
R= nuv(R) X nuw(R) J

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 22 /34
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Multivalued Dependency

A multivalued dependency is U — V.

A relation R(U, V, W) satisfies the MVD, if:
R= nuv(R) X nuw(R)

Connection to Entrop

We will always denote the MVD by U — V; W (W % the rest of attrs).

Dan Suciu Topics in DB Theory: Unit 5(2)

Fall 2023
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Multivalued Dependency

A multivalued dependency is U — V.

A relation R(U, V, W) satisfies the MVD, if:
R= nuv(R) X nuw(R) J

We will always denote the MVD by U — V; W (W % the rest of attrs).

Equivalently: if (u, vi, w2), (u, vo, w2) € R then (u, v1, ws) € R (and, by
symmetry, (u, va,w1) € R).

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 22 /34
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Examples

1. Fix R(X,Y,Z). If Z— X, then Z — (X Y).
Why?

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 23 /34
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Examples

1. Fix R(X, Y, Z). If Z = X, then Z — (X; Y).
Why? Because R = Ry(X,Z) x Ra(Y,Z) is lossless.
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Examples

1. Fix R(X, Y, Z). If Z = X, then Z — (X; Y).
Why? Because R = Ry(X,Z) x Ra(Y,Z) is lossless.

2. If R(X, Y) = Ri(X) x Ro(Y), then R =0 — (X; Y).

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023
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Examples

1. Fix R(X, Y, Z). If Z = X, then Z — (X; Y).
Why? Because R = Ry(X,Z) x Ra(Y,Z) is lossless.

2. If R(X, Y) = Ri(X) x Ro(Y), then R =0 — (X; Y).

X|\Y|Z Then REZ — (X;Y)

al x| m Ri(X,Z) = R(Y,Z) =
s R_|2|y|m X z Y V4

b|x|m a m X m

bly|m b n y m

al|x|n a n X n

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 23 /34
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Axiomatization

[Beeri et al., 1977] gave a sound and complete axiomatization for MVDs

and FDs (together).

MVD1 (Reflexivity): If Y C X
then X—>->Y.
MVD2 (Augmentation): If 2z C W and
X—=>->Y
then XW->->YZ.
MVD3 (Transitivity): If X->->Y and
Y—=>—=>2
then X—=>-—>2Z-v.

MVD4 (Pseudo-transitivity):

If X—>->Y and YW—>->2
then XW->->Z-YW.

MVD5 (Union): If X->->Y; and X—>->Y,

then x—>—>Y1Y2

MVD6 (Decomposition): If x—>—>Yl and

X—>—>1{2
then X—>-> =Y n Y,
x»—>¥l and

X: >->Y2

No need to read: we will see a simpler approach to MVDs
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MVDs Conditional Independence Connection to Entrop:
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Embedded MVD

Recall that an MVD ¢ = U — (V; W) includes all variables

When o does not include all the variables then it is called an Embedded
MVD, or EMVD.

A major breakthrough:

Theorem
[Herrmann, 1995] The implication problem of EMVDs is undecidable. J
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MVDs Conditional Independence Connection to Entrop
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Discussion

@ MVDs used to define the 4th Normal Form.

@ MVDs are more complex and less intuitive than FDs

@ FDs equivalent to a closure system, equivalent to a lattice. No such
thing for MVDs.
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Conditional Independence
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Conditional Independence Connection to Entrop:

Definition
Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)
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Conditional Independence
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Definition
Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)

V L W[U]if[p(V. W|U) = p(V|U) - p(W|U)

but be careful when p(U = u) = 0.
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Conditional Independence

o] Jele)

Definition
Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)

V L W[U]if[p(V. W|U) = p(V|U) - p(W|U)

but be careful when p(U = u) = 0.

XY |p

0] 0]1/6
01|16 XLY™
1(0(1/3
1|1]1/3
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Conditional Independence

Definition

o] Jele)

Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)

V L W[U]if[p(V. W|U) = p(V|U) - p(W|U)

but be careful when p(U = u) = 0.

XY |p
o0 1/6 el
0| 1]|1/6 X LY? Ye|[0]1/3 x[ 0] 1/2
1 0] 1/3 2/3 1 1/2
11|13
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Conditional Independence Connection to Entropy

o] Jele)

Definition
Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)

V L W[U]if[p(V. W|U) = p(V|U) - p(W|U)

but be careful when p(U = u) = 0.

XY |p
oo s e [V anal
01|16 XLY™ Yes 1/3 x[ 0 ]1/2 XL1LVY? 0ol1]13
1]0]1/3 1]2/3 1]1/2 1| o | e
1|1]1/3
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Conditional Independence
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Definition
Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)

V L W[U]if[p(V. W|U) = p(V|U) - p(W|U)

but be careful when p(U = u) = 0.

XY |p
0]0]1/6 X p Y] p X|Yle

00 |1/2
0 1)1/6 XLY?% Yes[0|1/3 x[70|1/2 XLY?| | |3 NO
1013 1] 2/3 1|1/2 o |16
1113
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Conditional Independence Connection to Entropy

Definition
Fix a joint probability distribution p over variables X.

V., W are independent conditioned on U if Yu, v, w:
plU=u,V=v)p(U=uW=w)=p(U=u)p(U=u,V=v,W =w)

V L W[U]if[p(V. W|U) = p(V|U) - p(W|U)

but be careful when p(U = u) = 0.

p

XTY X7V p
0[0]1/6 _ p Y]p 00 1/2

0| 1]1/6 XLv? Yes|O|1/3 x[0]1/2 XLy7| | | NO
1013 1| 2/3 1] 1/2 o |16
1113

Observation: if V L W|U holds then U — (V; W).
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Conditional Independence Connection to Entropy
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The Conditional Independence Implication Problem

Introduced by Pearl in the early 80s.
Given a set of Cls X and a Cl o, does ¥ |= o hold?

[Geiger and Pearl, 1993] complete axiomatization for “saturated” Cls
(meaning: each Cl includes all variables).

Is the Cl implication problem decidable? J

Open problem for decades. There were two independent claims of proofs
last year (I don't know their status).
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Conditional Independence Connection to Entrop
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Discussion

There is an uneasy connection between MVDs and Cls:

@ MVDs correspond only to saturated Cls, i.e. all variables. The
implication problem is the same.

@ EMVDs appear to correspond to general Cls, but their implication
problem is different.
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Connection to Entropy
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Connection to Entropy
000

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:

Let p be any probability distribution with support R, and h be its entropic
vector.

For any p, R = U — V iff h(V|U) =0
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Conditional Independence

Connection to Entropy
000

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:

Let p be any probability distribution with support R, and h be its entropic
vector.

For any p, R = U — V iff h(V|U) =0

If pis uniform, then R = U — (V; W) iff V L W|U iff I,(V; W|U) = O.J
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Conditional Independence Connection to Entropy
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Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:

Let p be any probability distribution with support R, and h be its entropic
vector.

For any p, R = U — V iff h(V|U) =0 J

If pis uniform, then R = U — (V; W) iff V L W|U iff I,(V; W|U) = O.J

XY |p

0ol0]1/4 7 —» (X Y)
0| 1]1/4 then '

Ll o | 1 X1v|z
1]1]1/4
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Conditional Independence Connection to Entropy
0000 000

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:

Let p be any probability distribution with support R, and h be its entropic
vector.

For any p, R = U — V iff h(V|U) =0 J

If p is uniform, then R = U — (V; W) iff V L W|U iff I,(V; W|U) = 0.

XY |p
0ol0]1/4 7 —» (X Y)
0]1]1/4 then !
1o 1§4 X LY|Z
1)1 |1/4

But, if probabilities are other than 1/4, then Z(; J(_XY|YZ))

The FD/MVD implication problem can be solved with entropic inequalities!
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Connection to Entropy
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FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>
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Conditional Independence

Connection to Entropy
0000

FD/MVD Implication by Entropic Inequalities

Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>
Let Z be the other variables, then:

(X —» Yl; Y2Z),(X —» Y2; le) )I (X —» Y1Y2|Z)
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FDs Conditional Independence

FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>
Let Z be the other variables, then:

(X —» Yl; Y2Z),(X —» Y2; le) ): (X —» Y1Y2|Z)

We show: /h(Yl; Y22|X) == /h(Y2; Y12|X) =0= /h(Y1Y2;Z|X) =0
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FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>
Let Z be the other variables, then:

(X = Y1; Y22), (X = Yo, Y1Z) = (X — Y1Y2|2Z).

We show: /h(yl; Y2Z|X) == /h(Y2; Y12|X) =0= /h(Y1Y2; Z|X) =0

Suffices to show:
Why??

Dan Suciu

In(Y1; Y2Z|X) + In(Y2; Y1Z|X) = In(Y1Y2; Z|X)

Topics in DB Theory: Unit 5(2) Fall 2023

33/34



Conditional Independence Connection to Entropy
0000 0000

FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>
Let Z be the other variables, then:

(X = Y1; Y22), (X = Yo, Y1Z) = (X — Y1Y2|2Z).

We show: /h(yl; Y2Z|X) == /h(Y2; Y12|X) =0= /h(Y1Y2; Z|X) =0

Suffices to show: | In(Y1; Y2Z|X) + In(Y2; YiZ|X) > Ih(Y1Y2; Z|X)
Why??

Ih(Y1; Y2Z|X) + In(Ya; Y1Z|X) =h(XY1) + h(XY2Z) — h(XY1Y2Z) — h(X)
+h(XY2) + h(XY1Z) — h(XY1Y2Z) — h(X)
1h(Y1Ya; Z|X) =h(XY1Y2) + h(XZ) — h(XY1Y2Z) — h(X)
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FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>

Let Z be the other variables, then:

(X = Y1; Y22), (X = Yo, Y1Z) = (X — Y1Y2|2Z).

We show: /h(yl; Y2Z|X) == /h(Y2; Y12|X) =0= /h(Y1Y2; Z|X) =0
Suffices to show: | I(Y1; Y2Z|X) + In(Y2; Y1 Z|X) > In(Y1Y2; Z|X)
Why??

Ih(Y1; Y2Z|X) + In(Ya; Y1Z|X) =h(XY1) + h(XY2Z) — h(XY1Y2Z) — h(X)
+h(XY2) + h(XY1Z) — h(XY1Y2Z) — h(X)
1h(Y1Ya; Z|X) =h(XY1Y2) + h(XZ) — h(XY1Y2Z) — h(X)

Need to show:

h(XY1) + h(XY2Z) + h(XY2) + h(XY1Z) >h(XY1Y2Z) + h(X)
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FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X — Y1, X = YaE X — Y1Y>

Let Z be the other variables, then:

(X — Yq; Y2Z),(X — Yo; le) )2 (X — Y1Y2|Z).

We show: /h(yl; Y2Z|X) == /h(Y2; Y12|X) =0= /h(Y1Y2; Z|X) =0
Suffices to show: | In(Y1; Y2Z|X) + In(Y2; YiZ|X) > Ih(Y1Y2; Z|X)
Why??

Ih(Y1; Y2Z|X) + In(Ya; Y1Z|X) =h(XY1) + h(XY2Z) — h(XY1Y2Z) — h(X)
+h(XY2) + h(XY1Z) — h(XY1Y2Z) — h(X)
1h(Y1Ya; Z|X) =h(XY1Y2) + h(XZ) — h(XY1Y2Z) — h(X)

Need to show:
h(XY1) + h(XY2Z) + h(XY2) + h(XY1Z) >h(XY1Y2Z) + h(X)

Follows from h(XY1) + h(XY2) > h(X) and h(XY2Z) + h(XY1Z) > h(XY1Y>2Z), which hold by
modularity and non-negativity
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Discussion

e Every FD/MVD implication can be derived from a Shannon inequality,
where all terms are of the form h(V|U) or
In(V; W|U) [Kenig and Suciu, 2022].

@ What about general Cls? Surprisingly, there exists Cls where the
conditional implication holds /p(---) =0 = Ip(---) = 0, but the
corresponding inequality fails [Kaced and Romashchenko, 2013].

e Limitations of the entropic method: restricted to FD/MVDs. Next
week: more general constraints, incomplete databases, probabilistic
databases.
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