CS294-248 Special Topics in Database Theory Unit 5 (Part 2): Database Constraints

Dan Suciu
University of Washington

Outline

- Classical constraints: FDs, MVDs, Cls
- The basics, and a modern approach

Functional Dependencies

Functional Dependencies

Fix a relation schema $R(\boldsymbol{X})$.

A Functional Dependency, FD, is an expression $\boldsymbol{U} \rightarrow \boldsymbol{V}$ for $\boldsymbol{U}, \boldsymbol{V} \subseteq \boldsymbol{X}$.

We say that an instance R^{D} satisfies the FD σ, and write $R^{D} \models \sigma$, if:

$$
\forall t, t^{\prime} \in R^{D}: \quad t . \boldsymbol{U}=t^{\prime} \boldsymbol{U} \Rightarrow t . \boldsymbol{V}=t^{\prime} . \boldsymbol{V}
$$

If Σ is a set of FDs, then we write $R^{D} \models \Sigma$ if $R^{D} \models \sigma$ for all $\sigma \in \Sigma$.

Example

Then:

X	Y	Z
123	12	23
321	32	21
125	12	25
323	32	23
637	63	37
283	28	83

$$
\begin{aligned}
R^{D} \models & X \rightarrow Y \\
& X \rightarrow Z \\
& X \rightarrow Y Z \\
& Y Z \rightarrow X
\end{aligned}
$$

But:

$$
R^{D} \not \models Y \rightarrow X
$$

The Implication Problem

We say that a set of FDs Σ implies and FD σ if $\forall R^{D}, R^{D} \models \Sigma$ implies $R^{D} \models \sigma$.

$$
\Sigma \models \sigma
$$

The Implication Problem

We say that a set of FDs Σ implies and FD σ if $\forall R^{D}, R^{D} \models \Sigma$ implies $R^{D} \models \sigma$.

$$
\Sigma \models \sigma
$$

Example: $A B \rightarrow C, C D \rightarrow E \models A B D \rightarrow E$.

The Implication Problem

We say that a set of FDs Σ implies and FD σ if $\forall R^{D}, R^{D} \models \Sigma$ implies $R^{D} \models \sigma$.

$$
\Sigma \models \sigma
$$

Example: $A B \rightarrow C, C D \rightarrow E \models A B D \rightarrow E$.

$$
\text { Proof: } \begin{array}{|ccccc|}
\hline A & B & C & D & E \\
\cline { 1 - 6 } & & & \cdots & \\
& & y & d & ? \\
& & \cdots & & \\
& & v & d & ? \\
\hline
\end{array}
$$

Armstrong's Axioms

Many minor variations. My favorite:

```
Trivial: \(\models \boldsymbol{U V} \rightarrow \boldsymbol{U}\)
Transitivity: \(\mathbf{U} \rightarrow \boldsymbol{V}, \boldsymbol{V} \rightarrow \boldsymbol{W} \models \boldsymbol{U} \rightarrow \boldsymbol{W}\)
Splitting/combining: \(\boldsymbol{U} \rightarrow \boldsymbol{V} \boldsymbol{W}\) iff \(\boldsymbol{U} \rightarrow \boldsymbol{V}, \boldsymbol{U} \rightarrow \boldsymbol{W}\)
```

However, cumbersome to use: Can we check $\Sigma \models \sigma$ in PTIME?

The Closure Operator

Fix $\boldsymbol{\Sigma}$. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^{+} \xlongequal{\text { def }}\{Z \mid \Sigma \models \boldsymbol{U} \rightarrow Z\}$
Note that Σ is implicit in defining \boldsymbol{U}^{+}.

Databases 101 (to discuss in class):

- Given \boldsymbol{U}, one can compute the closure \boldsymbol{U}^{+}in PTIME
- $\Sigma \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $\boldsymbol{V} \subseteq \boldsymbol{U}^{+}$.
- Example: $\Sigma=\{A B \rightarrow C, C D \rightarrow E\}$;

$$
A D^{+}=?
$$

The Closure Operator

Fix $\boldsymbol{\Sigma}$. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^{+} \xlongequal{\text { def }}\{Z \mid \Sigma \models \boldsymbol{U} \rightarrow Z\}$
Note that Σ is implicit in defining \boldsymbol{U}^{+}.

Databases 101 (to discuss in class):

- Given \boldsymbol{U}, one can compute the closure \boldsymbol{U}^{+}in PTIME
- $\Sigma \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $\boldsymbol{V} \subseteq \boldsymbol{U}^{+}$.
- Example: $\Sigma=\{A B \rightarrow C, C D \rightarrow E\}$;

$$
A D^{+}=? A D
$$

The Closure Operator

Fix $\boldsymbol{\Sigma}$. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^{+} \xlongequal{\text { def }}\{Z \mid \Sigma \models \boldsymbol{U} \rightarrow Z\}$
Note that Σ is implicit in defining \boldsymbol{U}^{+}.

Databases 101 (to discuss in class):

- Given \boldsymbol{U}, one can compute the closure \boldsymbol{U}^{+}in PTIME
- $\Sigma \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $\boldsymbol{V} \subseteq \boldsymbol{U}^{+}$.
- Example: $\Sigma=\{A B \rightarrow C, C D \rightarrow E\}$;

$$
A D^{+}=? A D
$$

$$
A B D^{+}=\text {? }
$$

The Closure Operator

Fix $\boldsymbol{\Sigma}$. The closure of a set \boldsymbol{U} is $\boldsymbol{U}^{+} \xlongequal{\text { def }}\{Z \mid \Sigma \models \boldsymbol{U} \rightarrow Z\}$
Note that Σ is implicit in defining \boldsymbol{U}^{+}.

Databases 101 (to discuss in class):

- Given \boldsymbol{U}, one can compute the closure \boldsymbol{U}^{+}in PTIME
- $\Sigma \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $\boldsymbol{V} \subseteq \boldsymbol{U}^{+}$.
- Example: $\Sigma=\{A B \rightarrow C, C D \rightarrow E\}$;

$$
A D^{+}=? A D
$$

$A B D^{+}=? A B C D$.

2-Tuple Relation

Fact

If $\Sigma \not \vDash \sigma$ then there exists a 2 -tuple relation R s.t. $R \models \Sigma$ and $R \not \models \sigma$.

Example: $A B \rightarrow C, C D \rightarrow E \not \vDash C D \rightarrow A$.
Find a counterexample with 2 tuples (use values 0,1):

$R=$| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| $?$ | $?$ | $?$ | $?$ | $?$ |
| $?$ | $?$ | $?$ | $?$ | $?$ |

2-Tuple Relation

Fact

If $\Sigma \not \models \sigma$ then there exists a 2-tuple relation R s.t. $R \models \Sigma$ and $R \not \models \sigma$.

Example: $A B \rightarrow C, C D \rightarrow E \not \models C D \rightarrow A$.

Find a counterexample with 2 tuples (use values 0,1):

$$
C D^{+}=C D E
$$

$R=$| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |

2-Tuple Relation

Fact

If $\Sigma \not \vDash \sigma$ then there exists a 2 -tuple relation R s.t. $R \models \Sigma$ and $R \not \models \sigma$.

Example: $A B \rightarrow C, C D \rightarrow E \not \vDash C D \rightarrow A$.
Find a counterexample with 2 tuples (use values 0,1):

$$
C D^{+}=C D E
$$

$R=$| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |

To refute $\boldsymbol{U} \rightarrow \boldsymbol{V}:$ Tuple 1: $(0,0, \ldots, 0)$, Tuple 2: $\boldsymbol{U}^{+}:=0$, rest $:=1$.

Armstrong Relation

- We can refute a single implication $\Sigma \models \sigma$ using a 2-tuple relation.
- Armstrong relation for Σ is a relation R_{Σ} that refutes all FDs not implied by Σ.
- Equivalently, $\Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.
- The construction of R_{Σ} is more interesting that the application. Next.

The Direct Product

[Fagin, 1982]
The direct product ${ }^{1}$ of two tuples $t=\left(a_{1}, \ldots, a_{n}\right)$ and $t^{\prime}=\left(b_{1}, \ldots, b_{n}\right)$ is:

$$
t \otimes t^{\prime} \stackrel{\text { def }}{=}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)
$$

The Direct Product

[Fagin, 1982]
The direct product ${ }^{1}$ of two tuples $t=\left(a_{1}, \ldots, a_{n}\right)$ and $t^{\prime}=\left(b_{1}, \ldots, b_{n}\right)$ is:

$$
t \otimes t^{\prime} \stackrel{\text { def }}{=}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)
$$

Notice: the domain of $t \otimes t^{\prime}$ is the cartesian product of domains of t and t^{\prime}.
${ }^{1}$ A.k.a. domain product.

The Direct Product

[Fagin, 1982]
The direct product ${ }^{1}$ of two tuples $t=\left(a_{1}, \ldots, a_{n}\right)$ and $t^{\prime}=\left(b_{1}, \ldots, b_{n}\right)$ is:

$$
t \otimes t^{\prime} \stackrel{\text { def }}{=}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)
$$

Notice: the domain of $t \otimes t^{\prime}$ is the cartesian product of domains of t and t^{\prime}.

The direct product of two relations $R(\boldsymbol{X}), R^{\prime}(\boldsymbol{X})$ (same attributes!) is

$$
R \otimes R^{\prime} \stackrel{\text { def }}{=}\left\{t \otimes t^{\prime} \mid t \in R, t^{\prime} \in R^{\prime}\right\}
$$

${ }^{1}$ A.k.a. domain product.

Example: Cartesian Product v.s. Direct Product

$T=$| A | B |
| :---: | :---: |
| 1 | 5 |
| 1 | 6 |

$S=$| X | Y | Z |
| :---: | :---: | :---: |
| a | b | c |
| f | b | d |
| a | e | d |

Example: Cartesian Product v.s. Direct Product

$$
T=\begin{array}{|c|c|}
\hline A & B \\
\hline 1 & 5 \\
1 & 6 \\
\hline
\end{array}
$$

$$
S=\begin{array}{|c|c|c|}
\hline X & Y & Z \\
\hline a & b & c \\
f & b & d \\
a & e & d \\
\hline
\end{array}
$$

$T \times S=$| A | B | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | a | b | c |
| 1 | 6 | a | b | c |
| 1 | 5 | f | b | d |
| \ldots | | | | |

Example: Cartesian Product v.s. Direct Product

$T=$| A | B |
| :---: | :---: |
| 1 | 5 |
| 1 | 6 |

$S=$| X | Y | Z |
| :---: | :---: | :---: |
| a | b | c |
| f | b | d |
| a | e | d |

$T \times S=$| A | B | X | Y | Z | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | a | b | c | |
| 1 | 6 | a | b | c | |
| 1 | 5 | f | b | d | |
| \ldots | | | | | |

$R=$| X | Y | Z |
| :---: | :---: | :---: |
| 1 | 5 | m |
| 1 | 6 | m |

Example: Cartesian Product v.s. Direct Product

$T=$| A | B |
| :---: | :---: |
| 1 | 5 |
| 1 | 6 |

$$
S=\begin{array}{|c|c|c|}
\hline X & Y & Z \\
\hline a & b & c \\
f & b & d \\
a & e & d \\
\hline
\end{array}
$$

$T \times S=$| A | B | X | Y | Z | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | a | b | c | | |
| 1 | 6 | a | b | c | | |
| 1 | 5 | f | b | d | | |
| \ldots | | | | | | |

$R=$| X | Y | Z |
| :---: | :---: | :---: |
| 1 | 5 | m |
| 1 | 6 | m |

$$
R \otimes S=\begin{array}{|c|c|c|}
\hline X & Y & Z \\
\hline 1 a & 5 b & m c \\
1 a & 6 b & m c \\
2 a & 6 b & n c \\
1 f & 5 b & m d \\
\hline
\end{array}
$$

Example: Cartesian Product v.s. Direct Product

$T=$| A | B |
| :---: | :---: |
| 1 | 5 |
| 1 | 6 |

$S=$| X | Y | Z |
| :---: | :---: | :---: |
| a | b | c |
| f | b | d |
| a | e | d |

$T \times S=$| A | B | X | Y | Z | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | a | b | c | |
| 1 | 6 | a | b | c | |
| 1 | 5 | f | b | d | |
| \ldots | | | | | |

$R=$| X | Y | Z |
| :---: | :---: | :---: |
| 1 | 5 | m |
| 1 | 6 | m |

$$
R \otimes S=
$$

Given prob. distributions with entropies h_{R}, h_{S}, what is $h_{R \otimes S}$? In class.

Example: Cartesian Product v.s. Direct Product

$T=$| A | B |
| :---: | :---: |
| 1 | 5 |
| 1 | 6 |

$S=$| X | Y | Z |
| :---: | :---: | :---: |
| a | b | c |
| f | b | d |
| a | e | d |

$T \times S=$| A | B | X | Y | Z | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | a | b | c | |
| 1 | 6 | a | b | c | |
| 1 | 5 | f | b | d | |
| \ldots | | | | | |

$R=$| X | Y | Z |
| :---: | :---: | :---: |
| 1 | 5 | m |
| 1 | 6 | m |

$$
R \otimes S=
$$

Given prob. distributions with entropies h_{R}, h_{S}, what is $h_{R \otimes S}$? In class. $h_{R}+h_{S}$ (sum of two vectors). h_{T}, h_{S} cannot be added, since they have $2^{2}, 2^{3}$ dimensions.

Armstrong's Relation

Lemma

For any FD $\sigma, R \otimes R^{\prime} \models \sigma$ iff $R \models \sigma$ and $R^{\prime} \models \sigma$.

Proof in class (it's straightforward).

Armstrong's Relation

Lemma

For any $\mathrm{FD} \sigma, R \otimes R^{\prime} \models \sigma$ iff $R \models \sigma$ and $R^{\prime} \models \sigma$.
Proof in class (it's straightforward).
Theorem (Armstrong's Relation)
For any set of $F D$ s Σ there exists R_{Σ} s.t., for any $F D \sigma, \Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Armstrong's Relation

Lemma

For any FD $\sigma, R \otimes R^{\prime} \models \sigma$ iff $R \models \sigma$ and $R^{\prime} \models \sigma$.
Proof in class (it's straightforward).
Theorem (Armstrong's Relation)
For any set of $F D$ s Σ there exists R_{Σ} s.t., for any $F D \sigma, \Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Proof Let $\sigma_{i}, i=1, n$ be all FDs not implied by Σ.
Since $\Sigma \not \models \sigma_{i}$, there exists a 2-tuple R_{i} such that $R_{i} \models \Sigma$ and $R_{i} \not \models \sigma$.

Armstrong's Relation

Lemma

For any FD $\sigma, R \otimes R^{\prime} \models \sigma$ iff $R \models \sigma$ and $R^{\prime} \models \sigma$.
Proof in class (it's straightforward).
Theorem (Armstrong's Relation)
For any set of $F D$ s Σ there exists R_{Σ} s.t., for any $F D \sigma, \Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Proof Let $\sigma_{i}, i=1, n$ be all FDs not implied by Σ.
Since $\Sigma \not \models \sigma_{i}$, there exists a 2-tuple R_{i} such that $R_{i} \models \Sigma$ and $R_{i} \not \models \sigma$.
Then $R_{\Sigma} \stackrel{\text { def }}{=} R_{1} \otimes \cdots \otimes R_{n}$ satisfies the theorem.

Armstrong's Relation

Lemma

For any FD $\sigma, R \otimes R^{\prime} \models \sigma$ iff $R \models \sigma$ and $R^{\prime} \models \sigma$.
Proof in class (it's straightforward).

Theorem (Armstrong's Relation)

For any set of $F D s \Sigma$ there exists R_{Σ} s.t., for any $F D \sigma, \Sigma \models \sigma$ iff $R_{\Sigma} \models \sigma$.

Proof Let $\sigma_{i}, i=1, n$ be all FDs not implied by Σ.
Since $\Sigma \not \vDash \sigma_{i}$, there exists a 2-tuple R_{i} such that $R_{i} \models \Sigma$ and $R_{i} \not \models \sigma$.
Then $R_{\Sigma} \stackrel{\text { def }}{=} R_{1} \otimes \cdots \otimes R_{n}$ satisfies the theorem.

Discussion

Next:

- Defining the FDs is equivalent to defining the closure operator \mathbf{U}^{+}.
- In turn, this is equivalent to defining the closed sets, i.e. those that satisfy $\boldsymbol{U}=\boldsymbol{U}^{+}$.
- And this is equivalent to defining the lattice of closed elements.

The Closure Operator: Properties

Monotone: If $\boldsymbol{U} \subseteq \boldsymbol{V}$, then $\boldsymbol{U}^{+} \subseteq \boldsymbol{V}^{+}$.

Expansive: $\boldsymbol{U} \subseteq \boldsymbol{U}^{+}$

Idempotent: $\left(\boldsymbol{U}^{+}\right)^{+}=\boldsymbol{U}^{+}$
Why??

Wikipedia calls these properties increasing, extensive, idempotent.

Discussion

The closure operator, and its associated closure system occur in many areas of math and CS.

- For any subset $S \subseteq \mathbb{R}^{d}$, its linear span, $\operatorname{span}(S)$, is the smallest vector space containing S; span is a closure operator.
- For any subset $S \subseteq \mathbb{R}^{d}$, let convex $(S) \subseteq \mathbb{R}^{d}$ be its convex closure; convex is a closure operator.
- The topological closure of a subset $S \subseteq \mathbb{R}^{d}$ is the set \bar{S} consisting of all limits $\lim _{n} x_{n}$, where the sequence x_{n} is in S.
- Fix an algebra A. The algebra generated by a subset S is the smallest sub-algebra containing S.

Detour: Closure Operators

Fix a set Ω.

Detour: Closure Operators

Fix a set Ω.

Definition (Closure Operator)

A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$
- idempotent $c l(c l(A))=c l(A)$

Detour: Closure Operators

Fix a set Ω.
Definition (Closure Operator)
A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$
- idempotent $c l(c l(A))=c l(A)$

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

- for any $\mathcal{S} \subseteq \mathcal{C}, \cap \mathcal{S} \in \mathcal{C}$.

Detour: Closure Operators

Fix a set Ω.
Definition (Closure Operator)
A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$
- idempotent $c l(c l(A))=c l(A)$

Definition (Closure System)
 A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.
 - for any $\mathcal{S} \subseteq \mathcal{C}, \cap \mathcal{S} \in \mathcal{C}$.

Equivalence

- Given $\mathcal{C}, c \mid(A) \stackrel{\text { def }}{=} \bigcap\{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.

Detour: Closure Operators

Fix a set Ω.

Definition (Closure Operator)

A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$

Definition (Closure System)

A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.

- for any $\mathcal{S} \subseteq \mathcal{C}, \bigcap \mathcal{S} \in \mathcal{C}$.
- idempotent $c l(c l(A))=c l(A)$

Equivalence

- Given $\mathcal{C}, c l(A) \stackrel{\text { def }}{=} \bigcap\{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given $c l, \mathcal{C} \stackrel{\text { def }}{=}\{X \mid c l(X)=X\}$ is a closure system.

Detour: Closure Operators

Fix a set Ω.

Definition (Closure Operator)

A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$

Definition (Closure System)

 A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.- for any $\mathcal{S} \subseteq \mathcal{C}, \bigcap \mathcal{S} \in \mathcal{C}$.
- idempotent $c l(c l(A))=c l(A)$

Equivalence

- Given $\mathcal{C}, c l(A) \stackrel{\text { def }}{=} \bigcap\{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given $c l, \mathcal{C} \stackrel{\text { def }}{=}\{X \mid c l(X)=X\}$ is a closure system.

Proof: We check that $A \stackrel{\text { def }}{=} \bigcap \mathcal{S}$ is in \mathcal{C}, for any set $\mathcal{S} \subseteq \mathcal{C}$:

Detour: Closure Operators

Fix a set Ω.

Definition (Closure Operator)

A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$

Definition (Closure System)

 A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.- for any $\mathcal{S} \subseteq \mathcal{C}, \bigcap \mathcal{S} \in \mathcal{C}$.
- idempotent $c l(c l(A))=c l(A)$

Equivalence

- Given $\mathcal{C}, c l(A) \stackrel{\text { def }}{=} \bigcap\{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given $c l, \mathcal{C} \stackrel{\text { def }}{=}\{X \mid c l(X)=X\}$ is a closure system.

Proof: We check that $A \stackrel{\text { def }}{=} \bigcap \mathcal{S}$ is in \mathcal{C}, for any set $\mathcal{S} \subseteq \mathcal{C}$: $c l(A)=c l(\bigcap\{X \mid X \in \mathcal{S}\}) \subseteq c l(X)$ for all $X \in \mathcal{S}$.

Detour: Closure Operators

Fix a set Ω.

Definition (Closure Operator)

A closure operator is $c l: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$ that is:

- monotone $A \subseteq B \Rightarrow c l(A) \subseteq c l(B)$
- expansive $A \subseteq c l(A)$

Definition (Closure System)

 A closure system is $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ s.t.- for any $\mathcal{S} \subseteq \mathcal{C}, \bigcap \mathcal{S} \in \mathcal{C}$.
- idempotent $c l(c l(A))=c l(A)$

Equivalence

- Given $\mathcal{C}, c l(A) \stackrel{\text { def }}{=} \bigcap\{X \in \mathcal{C} \mid A \subseteq X\}$ is a closure operator.
- Given $c l, \mathcal{C} \stackrel{\text { def }}{=}\{X \mid c l(X)=X\}$ is a closure system.

Proof: We check that $A \stackrel{\text { def }}{=} \bigcap \mathcal{S}$ is in \mathcal{C}, for any set $\mathcal{S} \subseteq \mathcal{C}$: $c l(A)=c l(\bigcap\{X \mid X \in \mathcal{S}\}) \subseteq c l(X)$ for all $X \in \mathcal{S}$. Therefore $c l(A) \subseteq \bigcap\{X \mid X \in \mathcal{S}\}=A$.

From FDs to the Lattice of Closed Sets

A set of FDs for $R(\boldsymbol{X})$ is equivalent to as closure system on \boldsymbol{X}.
Moreover, a closure system \mathcal{C} forms a lattice, $(\mathcal{C}, \wedge, \vee)$:

$$
X \wedge Y \stackrel{\text { def }}{=} X \cap Y \quad X \vee Y \stackrel{\text { def }}{=}(X \cup Y)^{+}
$$

From FDs to the Lattice of Closed Sets

A set of FDs for $R(\boldsymbol{X})$ is equivalent to as closure system on \boldsymbol{X}.
Moreover, a closure system \mathcal{C} forms a lattice, $(\mathcal{C}, \wedge, \vee)$:

$$
X \wedge Y \stackrel{\text { def }}{=} X \cap Y \quad X \vee Y \stackrel{\text { def }}{=}(X \cup Y)^{+}
$$

Example: $Y U \rightarrow X, X Z \rightarrow U$

Discussion

- Functional dependencies are a key concept in CS, beyond databases.
- In databases, the have two traditional applications:
- Database normalization: BCNF, 3NF
- Keys/foreign keys; "semantic pointers"
- More recent applications: discover FDs from data, approximate FDs, repairing for FDs (data imputation).

Multivalued Dependencies

Relation Decomposition

Take a relation R, partition its variables into $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$
R_{1}(\boldsymbol{U}, \boldsymbol{V}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{v}}(R), R_{2}(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{w}}(R)
$$

Can we always recover R from $R_{1} \bowtie R_{2}$?

Relation Decomposition

Take a relation R, partition its variables into $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$
R_{1}(\boldsymbol{U}, \boldsymbol{V}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{v}}(R), R_{2}(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{w}}(R)
$$

Can we always recover R from $R_{1} \bowtie R_{2}$? \quad NO! In general $R \subseteq R_{1} \bowtie R_{2}$.

Relation Decomposition

Take a relation R, partition its variables into $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$
R_{1}(\boldsymbol{U}, \boldsymbol{V}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{v}}(R), R_{2}(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{w}}(R)
$$

Can we always recover R from $R_{1} \bowtie R_{2}$? NO! In general $R \subseteq R_{1} \bowtie R_{2}$.

Lossless decomposition: when $R=R_{1} \bowtie R_{2}$.

Relation Decomposition

Take a relation R, partition its variables into $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$.

Instead of storing $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ we store its projections:

$$
R_{1}(\boldsymbol{U}, \boldsymbol{V}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{v}}(R), R_{2}(\boldsymbol{U}, \boldsymbol{W}) \stackrel{\text { def }}{=} \Pi_{\boldsymbol{u} \boldsymbol{w}}(R)
$$

Can we always recover R from $R_{1} \bowtie R_{2}$? \quad NO! In general $R \subseteq R_{1} \bowtie R_{2}$.

Lossless decomposition: when $R=R_{1} \bowtie R_{2}$.

Fact If $\boldsymbol{U} \rightarrow \boldsymbol{V}$ holds then the decomposition is lossless. This is the basis of database normalization (BCNF, 3NF).

Multivalued Dependency

A multivalued dependency is $\boldsymbol{U} \rightarrow \boldsymbol{V}$.

Multivalued Dependency

A multivalued dependency is $\boldsymbol{U} \rightarrow \boldsymbol{V}$.

A relation $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ satisfies the MVD, if:

$$
R=\Pi_{\boldsymbol{U} \boldsymbol{v}}(R) \bowtie \Pi_{\boldsymbol{U w}}(R)
$$

Multivalued Dependency

A multivalued dependency is $\boldsymbol{U} \rightarrow \boldsymbol{V}$.

A relation $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ satisfies the MVD, if:

$$
R=\Pi_{\boldsymbol{U V}}(R) \bowtie \Pi_{\boldsymbol{U w}}(R)
$$

We will always denote the MVD by $\boldsymbol{U} \rightarrow \boldsymbol{V} ; \boldsymbol{W}$ ($\boldsymbol{W} \stackrel{\text { def }}{=}$ the rest of attrs).

Multivalued Dependency

A multivalued dependency is $\boldsymbol{U} \rightarrow \boldsymbol{V}$.

A relation $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W})$ satisfies the MVD, if:

$$
R=\Pi_{\boldsymbol{U V}}(R) \bowtie \Pi_{\boldsymbol{U w}}(R)
$$

We will always denote the MVD by $\boldsymbol{U} \rightarrow \boldsymbol{V} ; \boldsymbol{W}$ ($\boldsymbol{W} \stackrel{\text { def }}{=}$ the rest of attrs).

Equivalently: if $\left(u, v_{1}, w_{2}\right),\left(u, v_{2}, w_{2}\right) \in R$ then $\left(u, v_{1}, w_{2}\right) \in R$ (and, by symmetry, $\left.\left(u, v_{2}, w_{1}\right) \in R\right)$.

Examples

1. Fix $R(X, Y, Z)$. If $Z \rightarrow X$, then $Z \rightarrow(X ; Y)$. Why?

Examples

1. Fix $R(X, Y, Z)$. If $Z \rightarrow X$, then $Z \rightarrow(X ; Y)$. Why? Because $R=R_{1}(X, Z) \bowtie R_{2}(Y, Z)$ is lossless.

Examples

1. Fix $R(X, Y, Z)$. If $Z \rightarrow X$, then $Z \rightarrow(X ; Y)$.

Why? Because $R=R_{1}(X, Z) \bowtie R_{2}(Y, Z)$ is lossless.
2. If $R(X, Y)=R_{1}(X) \times R_{2}(Y)$, then $R \models \emptyset \rightarrow(X ; Y)$.

Examples

1. Fix $R(X, Y, Z)$. If $Z \rightarrow X$, then $Z \rightarrow(X ; Y)$.

Why? Because $R=R_{1}(X, Z) \bowtie R_{2}(Y, Z)$ is lossless.
2. If $R(X, Y)=R_{1}(X) \times R_{2}(Y)$, then $R \models \emptyset \rightarrow(X ; Y)$.

3. $R=$| X | Y | Z |
| :---: | :---: | :---: |
| a | x | m |
| a | y | m |
| b | x | m |
| b | y | m |
| a | x | n |

Then $R \models Z \rightarrow(X ; Y)$

$R_{1}(X, Z)=$	$R_{2}(Y, Z)=$				
X	Z				
a	m				
b	n				
a	n		\quad	Y	Z
:---:	:---:				
x	m				
y	m				
x	n				

Axiomatization

[Beeri et al., 1977] gave a sound and complete axiomatization for MVDs and FDs (together).

```
MVD1 (Reflexivity): If Y C X
    then X }->->Y\mathrm{ .
MVD2 (Augmentation): If z C W and
    X}->->
    then XW }->>YZ\mathrm{ .
MVD3 (Transitivity): If X }->->⿱\textrm{Y}\mathrm{ (and
    Y}->->
    then X }->->⿱Z-Y-Y
```

```
MVD4 (Pseudo-transitivity):
        If }X->->Y\mathrm{ and YW }->->\textrm{Z
        then XW->->Z-YW.
```

```
MVD5 (Union): If }\textrm{X}->->\mp@subsup{\textrm{Y}}{1}{}\mathrm{ and }\textrm{X}->->\mp@subsup{\textrm{Y}}{2}{
    then X}->->\mp@subsup{Y}{1}{}\mp@subsup{Y}{2}{}
MVD6 (Decomposition): If X }->->\mp@subsup{Y}{1}{}\mathrm{ and
    X}->->\mp@subsup{Y}{2}{
    then }\textrm{X}->->\mp@subsup{\textrm{Y}}{1}{}\cap\mp@subsup{\textrm{Y}}{2}{}\mathrm{ ,
    X}->->\mp@subsup{Y}{1}{}-\mp@subsup{Y}{2}{}\mathrm{ and
    X}->->\mp@subsup{Y}{2}{}-\mp@subsup{Y}{1}{}
```

No need to read: we will see a simpler approach to MVDs

Embedded MVD

Recall that an MVD $\sigma=\boldsymbol{U} \rightarrow(\boldsymbol{V} ; \boldsymbol{W})$ includes all variables

When σ does not include all the variables then it is called an Embedded MVD, or EMVD.

A major breakthrough:
Theorem
[Herrmann, 1995] The implication problem of EMVDs is undecidable.

Discussion

- MVDs used to define the 4th Normal Form.
- MVDs are more complex and less intuitive than FDs
- FDs equivalent to a closure system, equivalent to a lattice. No such thing for MVDs.

Conditional Independence

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

$$
\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U} \text { if } p(\boldsymbol{V}, \boldsymbol{W} \mid \boldsymbol{U})=p(\boldsymbol{V} \mid \boldsymbol{U}) \cdot p(\boldsymbol{W} \mid \boldsymbol{U})
$$

but be careful when $p(\boldsymbol{U}=\boldsymbol{u})=0$.

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

$$
\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U} \text { if } p(\boldsymbol{V}, \boldsymbol{W} \mid \boldsymbol{U})=p(\boldsymbol{V} \mid \boldsymbol{U}) \cdot p(\boldsymbol{W} \mid \boldsymbol{U})
$$

but be careful when $p(\boldsymbol{U}=\boldsymbol{u})=0$.

X	Y	p	
0	0	$1 / 6$	
0	1	$1 / 6$	$X \perp Y ?:$
1	0	$1 / 3$	
1	1	$1 / 3$	

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

$$
\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U} \text { if } p(\boldsymbol{V}, \boldsymbol{W} \mid \boldsymbol{U})=p(\boldsymbol{V} \mid \boldsymbol{U}) \cdot p(\boldsymbol{W} \mid \boldsymbol{U})
$$

but be careful when $p(\boldsymbol{U}=\boldsymbol{u})=0$.

X	Y	p			
0	0	$1 / 6$			
0	1	$1 / 6$	$X \perp Y$		
1	0	$1 / 3$			
1	1	$1 / 3$			

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

$$
\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U} \text { if } p(\boldsymbol{V}, \boldsymbol{W} \mid \boldsymbol{U})=p(\boldsymbol{V} \mid \boldsymbol{U}) \cdot p(\boldsymbol{W} \mid \boldsymbol{U})
$$

but be careful when $p(\boldsymbol{U}=\boldsymbol{u})=0$.

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

$$
\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U} \text { if } p(\boldsymbol{V}, \boldsymbol{W} \mid \boldsymbol{U})=p(\boldsymbol{V} \mid \boldsymbol{U}) \cdot p(\boldsymbol{W} \mid \boldsymbol{U})
$$

but be careful when $p(\boldsymbol{U}=\boldsymbol{u})=0$.

Definition

Fix a joint probability distribution p over variables \boldsymbol{X}.
$\boldsymbol{V}, \boldsymbol{W}$ are independent conditioned on \boldsymbol{U} if $\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$:
$p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{W}=\boldsymbol{w})=p(\boldsymbol{U}=\boldsymbol{u}) p(\boldsymbol{U}=\boldsymbol{u}, \boldsymbol{V}=\boldsymbol{v}, \boldsymbol{W}=\boldsymbol{w})$

$$
\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U} \text { if } p(\boldsymbol{V}, \boldsymbol{W} \mid \boldsymbol{U})=p(\boldsymbol{V} \mid \boldsymbol{U}) \cdot p(\boldsymbol{W} \mid \boldsymbol{U})
$$

but be careful when $p(\boldsymbol{U}=\boldsymbol{u})=0$.

Observation: if $\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U}$ holds then $\boldsymbol{U} \rightarrow(\boldsymbol{V} ; \boldsymbol{W})$.

The Conditional Independence Implication Problem

Introduced by Pearl in the early 80s.
Given a set of $\mathrm{Cls} \Sigma$ and a $\mathrm{Cl} \sigma$, does $\Sigma \models \sigma$ hold?
[Geiger and Pearl, 1993] complete axiomatization for "saturated" Cls (meaning: each Cl includes all variables).

Is the Cl implication problem decidable?

Open problem for decades. There were two independent claims of proofs last year (I don't know their status).

Discussion

There is an uneasy connection between MVDs and Cls:

- MVDs correspond only to saturated Cls, i.e. all variables. The implication problem is the same.
- EMVDs appear to correspond to general Cls, but their implication problem is different.

Connection to Entropy

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:
Let p be any probability distribution with support R, and h be its entropic vector.

For any $p, R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V} \mid \boldsymbol{U})=0$

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:
Let p be any probability distribution with support R, and h be its entropic vector.

For any $p, R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V} \mid \boldsymbol{U})=0$

If p is uniform, then $R \models \boldsymbol{U} \rightarrow(\boldsymbol{V} ; \boldsymbol{W})$ iff $\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U}$ iff $\boldsymbol{I}_{h}(\boldsymbol{V} ; \boldsymbol{W} \mid \boldsymbol{U})=0$.

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:
Let p be any probability distribution with support R, and h be its entropic vector.

For any $p, R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V} \mid \boldsymbol{U})=0$

If p is uniform, then $R \models \boldsymbol{U} \rightarrow(\boldsymbol{V} ; \boldsymbol{W})$ iff $\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U}$ iff $\boldsymbol{I}_{h}(\boldsymbol{V} ; \boldsymbol{W} \mid \boldsymbol{U})=0$.

X	Y	p
0	0	$1 / 4$
0	1	$1 / 4$
1	0	$1 / 4$
1	1	$1 / 4$

then $\quad \begin{aligned} Z & \rightarrow(X ; Y) \\ & X \perp Y \mid Z .\end{aligned}$

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:
Let p be any probability distribution with support R, and h be its entropic vector.

For any $p, R \models \boldsymbol{U} \rightarrow \boldsymbol{V}$ iff $h(\boldsymbol{V} \mid \boldsymbol{U})=0$

If p is uniform, then $R \models \boldsymbol{U} \rightarrow(\boldsymbol{V} ; \boldsymbol{W})$ iff $\boldsymbol{V} \perp \boldsymbol{W} \mid \boldsymbol{U}$ iff $\boldsymbol{I}_{h}(\boldsymbol{V} ; \boldsymbol{W} \mid \boldsymbol{U})=0$.

X	Y
0	0
0	1
1	0
1	1

then $\quad \begin{aligned} Z & \rightarrow(X ; Y) \\ & X \perp Y \mid Z .\end{aligned}$

But, if probabilities are other than $1 / 4$, then

$$
\begin{aligned}
& Z \rightarrow(X ; Y) \\
& \neg(X \perp Y \mid Z) .
\end{aligned}
$$

The FD/MVD implication problem can be solved with entropic inequalities!

FD/MVD Implication by Entropic Inequalities

 Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \vDash X \rightarrow Y_{1} Y_{2}$
FD/MVD Implication by Entropic Inequalities

Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \models X \rightarrow Y_{1} Y_{2}$
Let Z be the other variables, then:
$\left(X \rightarrow Y_{1} ; Y_{2} Z\right),\left(X \rightarrow Y_{2} ; Y_{1} Z\right) \vDash\left(X \rightarrow Y_{1} Y_{2} \mid Z\right)$.

FD/MVD Implication by Entropic Inequalities

 Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \models X \rightarrow Y_{1} Y_{2}$ Let Z be the other variables, then: $\left(X \rightarrow Y_{1} ; Y_{2} Z\right),\left(X \rightarrow Y_{2} ; Y_{1} Z\right) \vDash\left(X \rightarrow Y_{1} Y_{2} \mid Z\right)$.We show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)=I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right)=0 \Rightarrow I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)=0$

FD/MVD Implication by Entropic Inequalities

 Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \models X \rightarrow Y_{1} Y_{2}$ Let Z be the other variables, then: $\left(X \rightarrow Y_{1} ; Y_{2} Z\right),\left(X \rightarrow Y_{2} ; Y_{1} Z\right) \vDash\left(X \rightarrow Y_{1} Y_{2} \mid Z\right)$.We show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)=I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right)=0 \Rightarrow I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)=0$
Suffices to show: $I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) \geq I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)$
Why??

FD/MVD Implication by Entropic Inequalities

Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \models X \rightarrow Y_{1} Y_{2}$
Let Z be the other variables, then:
$\left(X \rightarrow Y_{1} ; Y_{2} Z\right),\left(X \rightarrow Y_{2} ; Y_{1} Z\right) \mid=\left(X \rightarrow Y_{1} Y_{2} \mid Z\right)$.
We show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)=I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right)=0 \Rightarrow I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)=0$
Suffices to show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) \geq I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)$
Why??

$$
\begin{aligned}
I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) & =h\left(X Y_{1}\right)+h\left(X Y_{2} Z\right)-h\left(X Y_{1} Y_{2} Z\right)-h(X) \\
& +h\left(X Y_{2}\right)+h\left(X Y_{1} Z\right)-h\left(X Y_{1} Y_{2} Z\right)-h(X) \\
I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right) & =h\left(X Y_{1} Y_{2}\right)+h(X Z)-h\left(X Y_{1} Y_{2} Z\right)-h(X)
\end{aligned}
$$

FD/MVD Implication by Entropic Inequalities

Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \models X \rightarrow Y_{1} Y_{2}$
Let Z be the other variables, then:
$\left(X \rightarrow Y_{1} ; Y_{2} Z\right),\left(X \rightarrow Y_{2} ; Y_{1} Z\right) \mid=\left(X \rightarrow Y_{1} Y_{2} \mid Z\right)$.
We show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)=I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right)=0 \Rightarrow I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)=0$
Suffices to show: $I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) \geq I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)$
Why??

$$
\begin{aligned}
I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) & =h\left(X Y_{1}\right)+h\left(X Y_{2} Z\right)-h\left(X Y_{1} Y_{2} Z\right)-h(X) \\
& +h\left(X Y_{2}\right)+h\left(X Y_{1} Z\right)-h\left(X Y_{1} Y_{2} Z\right)-h(X) \\
I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right) & =h\left(X Y_{1} Y_{2}\right)+h(X Z)-h\left(X Y_{1} Y_{2} Z\right)-h(X)
\end{aligned}
$$

Need to show:

$$
h\left(X Y_{1}\right)+h\left(X Y_{2} Z\right)+h\left(X Y_{2}\right)+h\left(X Y_{1} Z\right) \geq h\left(X Y_{1} Y_{2} Z\right)+h(X)
$$

FD/MVD Implication by Entropic Inequalities

Example: Union Axiom MVD5: $X \rightarrow Y_{1}, X \rightarrow Y_{2} \models X \rightarrow Y_{1} Y_{2}$ Let Z be the other variables, then:
$\left(X \rightarrow Y_{1} ; Y_{2} Z\right),\left(X \rightarrow Y_{2} ; Y_{1} Z\right) \vDash\left(X \rightarrow Y_{1} Y_{2} \mid Z\right)$.
We show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)=I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right)=0 \Rightarrow I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)=0$
Suffices to show: $\quad I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) \geq I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right)$
Why??

$$
\begin{aligned}
I_{h}\left(Y_{1} ; Y_{2} Z \mid X\right)+I_{h}\left(Y_{2} ; Y_{1} Z \mid X\right) & =h\left(X Y_{1}\right)+h\left(X Y_{2} Z\right)-h\left(X Y_{1} Y_{2} Z\right)-h(X) \\
& +h\left(X Y_{2}\right)+h\left(X Y_{1} Z\right)-h\left(X Y_{1} Y_{2} Z\right)-h(X) \\
I_{h}\left(Y_{1} Y_{2} ; Z \mid X\right) & =h\left(X Y_{1} Y_{2}\right)+h(X Z)-h\left(X Y_{1} Y_{2} Z\right)-h(X)
\end{aligned}
$$

Need to show:

$$
h\left(X Y_{1}\right)+h\left(X Y_{2} Z\right)+h\left(X Y_{2}\right)+h\left(X Y_{1} Z\right) \geq h\left(X Y_{1} Y_{2} Z\right)+h(X)
$$

Follows from $h\left(X Y_{1}\right)+h\left(X Y_{2}\right) \geq h(X)$ and $h\left(X Y_{2} Z\right)+h\left(X Y_{1} Z\right) \geq h\left(X Y_{1} Y_{2} Z\right)$, which hold by modularity and non-negativity

Discussion

- Every FD/MVD implication can be derived from a Shannon inequality, where all terms are of the form $h(\boldsymbol{V} \mid \boldsymbol{U})$ or $I_{h}(\boldsymbol{V} ; \boldsymbol{W} \mid \boldsymbol{U})$ [Kenig and Suciu, 2022].
- What about general Cls? Surprisingly, there exists Cls where the conditional implication holds $I_{h}(\cdots)=0 \Rightarrow I_{h}(\cdots)=0$, but the corresponding inequality fails [Kaced and Romashchenko, 2013].
- Limitations of the entropic method: restricted to FD/MVDs. Next week: more general constraints, incomplete databases, probabilistic databases.

Beeri, C., Fagin, R., and Howard, J. H. (1977).
A complete axiomatization for functional and multivalued dependencies in database relations.
In Proceedings of the 1977 ACM SIGMOD International Conference on Management of Data, Toronto, Canada, August $3-5,1977$., pages 47-61.

Fagin, R. (1982).
Horn clauses and database dependencies.
J. ACM, 29(4):952-985.

Geiger, D. and Pearl, J. (1993).
Logical and algorithmic properties of conditional independence and graphical models.
The Annals of Statistics, 21(4):2001-2021.
Herrmann, C. (1995).
On the undecidability of implications between embedded multivalued database dependencies.
Inf. Comput., 122(2):221-235.
Kaced, T. and Romashchenko, A. E. (2013).
Conditional information inequalities for entropic and almost entropic points.
IEEE Trans. Inf. Theory, 59(11):7149-7167.
Kenig, B. and Suciu, D. (2022).
Integrity constraints revisited: From exact to approximate implication.
Log. Methods Comput. Sci., 18(1).
Lee, T. T. (1987).
An information-theoretic analysis of relational databases - part I: data dependencies and information metric. IEEE Trans. Software Eng., 13(10):1049-1061.

