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Outline

Classical constraints: FDs, MVDs, CIs

The basics, and a modern approach
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Functional Dependencies

Fix a relation schema R(X ).

A Functional Dependency, FD, is an expression U → V for U ,V ⊆ X .

We say that an instance RD satisfies the FD σ, and write RD |= σ, if:

∀t, t ′ ∈ RD : t.U = t ′U ⇒t.V = t ′.V

If Σ is a set of FDs, then we write RD |= Σ if RD |= σ for all σ ∈ Σ.
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Example

X Y Z

123 12 23
321 32 21
125 12 25
323 32 23
637 63 37
283 28 83

Then:

RD |=X → Y ,

X → Z ,

X → YZ ,

YZ → X

But:

RD ̸|=Y → X
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The Implication Problem

We say that a set of FDs Σ implies and FD σ if ∀RD , RD |= Σ implies
RD |= σ.

Σ |= σ

Example: AB → C ,CD → E |= ABD → E .

Proof:

A B C D E
· · ·

a b y d ?
· · ·

a b v d ?
· · ·
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Armstrong’s Axioms

Many minor variations. My favorite:

Trivial: |= UV → U
Transitivity: U → V ,V → W |= U → W
Splitting/combining: U → VW iff U → V ,U → W

However, cumbersome to use: Can we check Σ |= σ in PTIME?
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The Closure Operator

Fix Σ. The closure of a set U is U+ def
= {Z | Σ |= U → Z}

Note that Σ is implicit in defining U+.

Databases 101 (to discuss in class):

Given U , one can compute the closure U+ in PTIME

Σ |= U → V iff V ⊆ U+.

Example: Σ = {AB → C ,CD → E};
AD+ =?

AD ABD+ =? ABCD.
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2-Tuple Relation

Fact

If Σ ̸|= σ then there exists a 2-tuple relation R s.t. R |= Σ and R ̸|= σ.

Example: AB → C ,CD → E ̸|= CD → A.

Find a counterexample with 2 tuples (use values 0, 1):

CD+ = CDE

R =

A B C D E

? ? ? ? ?
? ? ? ? ?

To refute U → V : Tuple 1: (0, 0, . . . , 0), Tuple 2: U+ := 0, rest := 1.
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Armstrong Relation

We can refute a single implication Σ |= σ using a 2-tuple relation.

Armstrong relation for Σ is a relation RΣ that refutes all FDs not
implied by Σ.

Equivalently, Σ |= σ iff RΣ |= σ.

The construction of RΣ is more interesting that the application. Next.
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The Direct Product

[Fagin, 1982]
The direct product1 of two tuples t = (a1, . . . , an) and t ′ = (b1, . . . , bn) is:

t ⊗ t ′
def
= ((a1, b1), . . . , (an, bn))

Notice: the domain of t ⊗ t ′ is the cartesian product of domains of t and t ′.

The direct product of two relations R(X ),R ′(X ) (same attributes!) is

R ⊗ R ′ def= {t ⊗ t ′ | t ∈ R, t ′ ∈ R ′}

1A.k.a. domain product.
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Example: Cartesian Product v.s. Direct Product

T =

A B

1 5
1 6

S =

X Y Z

a b c
f b d
a e d

T × S =

A B X Y Z

1 5 a b c
1 6 a b c
1 5 f b d

. . .

R =

X Y Z

1 5 m
1 6 m

R ⊗ S =

X Y Z

1a 5b mc
1a 6b mc
2a 6b nc
1f 5b md

. . .

Given prob. distributions with entropies hR , hS , what is hR⊗S?
In class. hR + hS (sum of two vectors).
hT , hS cannot be added, since they have 22, 23 dimensions.
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Armstrong’s Relation

Lemma

For any FD σ, R ⊗ R ′ |= σ iff R |= σ and R ′ |= σ.

Proof in class (it’s straightforward).

Theorem (Armstrong’s Relation)

For any set of FDs Σ there exists RΣ s.t., for any FD σ, Σ |= σ iff RΣ |= σ.

Proof Let σi , i = 1, n be all FDs not implied by Σ.

Since Σ ̸|= σi , there exists a 2-tuple Ri such that Ri |= Σ and Ri ̸|= σ.

Then RΣ
def
= R1 ⊗ · · · ⊗ Rn satisfies the theorem. Why?

How large is RΣ?
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Discussion

Next:

Defining the FDs is equivalent to defining the closure operator U+.

In turn, this is equivalent to defining the closed sets, i.e. those that
satisfy U = U+.

And this is equivalent to defining the lattice of closed elements.
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The Closure Operator: Properties

Monotone: If U ⊆ V , then U+ ⊆ V+. Why??

Expansive: U ⊆ U+ Why??

Idempotent: (U+)+ = U+ Why??

Wikipedia calls these properties increasing, extensive, idempotent.

Dan Suciu Topics in DB Theory: Unit 5(2) Fall 2023 15 / 34



FDs MVDs Conditional Independence Connection to Entropy

Discussion

The closure operator, and its associated closure system occur in many areas
of math and CS.

For any subset S ⊆ Rd , its linear span, span(S), is the smallest vector
space containing S ; span is a closure operator.

For any subset S ⊆ Rd , let convex(S) ⊆ Rd be its convex closure;
convex is a closure operator.

The topological closure of a subset S ⊆ Rd is the set S̄ consisting of
all limits limn xn, where the sequence xn is in S .

Fix an algebra A. The algebra generated by a subset S is the smallest
sub-algebra containing S .
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Detour: Closure Operators

Fix a set Ω.

Definition (Closure Operator)

A closure operator is cl : P(Ω) → P(Ω) that is:

monotone A ⊆ B ⇒ cl(A) ⊆ cl(B)

expansive A ⊆ cl(A)

idempotent cl(cl(A)) = cl(A)

Definition (Closure System)

A closure system is C ⊆ P(Ω) s.t.

for any S ⊆ C,
⋂

S ∈ C.

Equivalence

Given C, cl(A) def
=

⋂
{X ∈ C | A ⊆ X} is a closure operator.

Given cl , C def
= {X | cl(X ) = X} is a closure system.

Proof: We check that A
def
=

⋂
S is in C, for any set S ⊆ C:

cl(A) = cl (
⋂
{X | X ∈ S}) ⊆ cl(X ) for all X ∈ S.

Therefore cl(A) ⊆
⋂
{X | X ∈ S} = A.
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= {X | cl(X ) = X} is a closure system.

Proof: We check that A
def
=

⋂
S is in C, for any set S ⊆ C:

cl(A) = cl (
⋂
{X | X ∈ S}) ⊆ cl(X ) for all X ∈ S.

Therefore cl(A) ⊆
⋂
{X | X ∈ S} = A.
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FDs MVDs Conditional Independence Connection to Entropy

From FDs to the Lattice of Closed Sets

A set of FDs for R(X ) is equivalent to as closure system on X .

Moreover, a closure system C forms a lattice, (C,∧,∨):

X ∧ Y
def
=X ∩ Y X ∨ Y

def
=(X ∪ Y )+

Example: YU → X ,XZ → U

X UY Z

∅

XY ZUXU

XYZU

XYU XZUYZ
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FDs MVDs Conditional Independence Connection to Entropy

Discussion

Functional dependencies are a key concept in CS, beyond databases.

In databases, the have two traditional applications:
▶ Database normalization: BCNF, 3NF
▶ Keys/foreign keys; “semantic pointers”

More recent applications: discover FDs from data, approximate FDs,
repairing for FDs (data imputation).
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Multivalued Dependencies
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FDs MVDs Conditional Independence Connection to Entropy

Relation Decomposition

Take a relation R, partition its variables into U ,V ,W .

Instead of storing R(U ,V ,W ) we store its projections:

R1(U ,V )
def
= ΠUV (R), R2(U ,W )

def
= ΠUW (R)

Can we always recover R from R1 ⋊⋉ R2?

NO! In general R ⊆ R1 ⋊⋉ R2.

Lossless decomposition: when R = R1 ⋊⋉ R2.

Fact If U → V holds then the decomposition is lossless. This is the basis
of database normalization (BCNF, 3NF).
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FDs MVDs Conditional Independence Connection to Entropy

Multivalued Dependency

A multivalued dependency is U ↠ V .

A relation R(U ,V ,W ) satisfies the MVD, if:
R = ΠUV (R) ⋊⋉ ΠUW (R)

We will always denote the MVD by U ↠ V ;W (W def
= the rest of attrs).

Equivalently: if (u, v1,w2), (u, v2,w2) ∈ R then (u, v1,w2) ∈ R (and, by
symmetry, (u, v2,w1) ∈ R).
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FDs MVDs Conditional Independence Connection to Entropy

Examples

1. Fix R(X ,Y ,Z ). If Z → X , then Z ↠ (X ;Y ).
Why?

Because R = R1(X ,Z ) ⋊⋉ R2(Y ,Z ) is lossless.

2. If R(X ,Y ) = R1(X )× R2(Y ), then R |= ∅ ↠ (X ;Y ).

3. R =

X Y Z

a x m
a y m
b x m
b y m
a x n

Then R |= Z ↠ (X ;Y )
R1(X ,Z ) =

X Z

a m
b n
a n

R2(Y ,Z ) =

Y Z

x m
y m
x n
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FDs MVDs Conditional Independence Connection to Entropy

Axiomatization

[Beeri et al., 1977] gave a sound and complete axiomatization for MVDs
and FDs (together).

No need to read: we will see a simpler approach to MVDs
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Embedded MVD

Recall that an MVD σ = U ↠ (V ;W ) includes all variables

When σ does not include all the variables then it is called an Embedded
MVD, or EMVD.

A major breakthrough:

Theorem

[Herrmann, 1995] The implication problem of EMVDs is undecidable.
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Discussion

MVDs used to define the 4th Normal Form.

MVDs are more complex and less intuitive than FDs

FDs equivalent to a closure system, equivalent to a lattice. No such
thing for MVDs.
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Conditional Independence
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FDs MVDs Conditional Independence Connection to Entropy

Definition

Fix a joint probability distribution p over variables X .

V ,W are independent conditioned on U if ∀u, v ,w :
p(U = u,V = v)p(U = u,W = w) = p(U = u)p(U = u,V = v ,W = w)

V ⊥ W |U if p(V ,W |U) = p(V |U) · p(W |U)

but be careful when p(U = u) = 0.

X Y p
0 0 1/6
0 1 1/6
1 0 1/3
1 1 1/3

X ⊥ Y ?: Yes
X p
0 1/3
1 2/3

×
Y p
0 1/2
1 1/2

X ⊥ Y ?

X Y p
0 0 1/2
0 1 1/3
1 0 1/6

NO

Observation: if V ⊥ W |U holds then U ↠ (V ;W ).
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FDs MVDs Conditional Independence Connection to Entropy

The Conditional Independence Implication Problem

Introduced by Pearl in the early 80s.
Given a set of CIs Σ and a CI σ, does Σ |= σ hold?

[Geiger and Pearl, 1993] complete axiomatization for “saturated” CIs
(meaning: each CI includes all variables).

Is the CI implication problem decidable?

Open problem for decades. There were two independent claims of proofs
last year (I don’t know their status).
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FDs MVDs Conditional Independence Connection to Entropy

Discussion

There is an uneasy connection between MVDs and CIs:

MVDs correspond only to saturated CIs, i.e. all variables. The
implication problem is the same.

EMVDs appear to correspond to general CIs, but their implication
problem is different.
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Connection to Entropy
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FDs MVDs Conditional Independence Connection to Entropy

Entropic Vectors

Fix a relation instance R. [Lee, 1987] observed the following:
Let p be any probability distribution with support R, and h be its entropic
vector.

For any p, R |= U → V iff h(V |U) = 0

If p is uniform, then R |= U ↠ (V ;W ) iff V ⊥ W |U iff Ih(V ;W |U) = 0.

X Y p
0 0 1/4
0 1 1/4
1 0 1/4
1 1 1/4

then
Z ↠ (X ;Y )
X ⊥ Y |Z .

But, if probabilities are other than 1/4, then
Z ↠ (X ;Y )
¬(X ⊥ Y |Z ).

The FD/MVD implication problem can be solved with entropic inequalities!
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FDs MVDs Conditional Independence Connection to Entropy

FD/MVD Implication by Entropic Inequalities
Example: Union Axiom MVD5: X ↠ Y1,X ↠ Y2 |= X ↠ Y1Y2

Let Z be the other variables, then:
(X ↠ Y1;Y2Z ), (X ↠ Y2;Y1Z ) |= (X ↠ Y1Y2|Z ).
We show: Ih(Y1;Y2Z |X ) = Ih(Y2;Y1Z |X ) = 0 ⇒ Ih(Y1Y2;Z |X ) = 0

Suffices to show: Ih(Y1;Y2Z |X ) + Ih(Y2;Y1Z |X ) ≥ Ih(Y1Y2;Z |X )

Why??

Ih(Y1;Y2Z |X ) + Ih(Y2;Y1Z |X ) =h(XY1) + h(XY2Z)− h(XY1Y2Z)− h(X )

+h(XY2) + h(XY1Z)− h(XY1Y2Z)− h(X )

Ih(Y1Y2;Z |X ) =h(XY1Y2) + h(XZ)− h(XY1Y2Z)− h(X )

Need to show:

h(XY1) + h(XY2Z) + h(XY2) + h(XY1Z) ≥h(XY1Y2Z) + h(X )

Follows from h(XY1) + h(XY2) ≥ h(X ) and h(XY2Z) + h(XY1Z) ≥ h(XY1Y2Z), which hold by

modularity and non-negativity
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Example: Union Axiom MVD5: X ↠ Y1,X ↠ Y2 |= X ↠ Y1Y2

Let Z be the other variables, then:
(X ↠ Y1;Y2Z ), (X ↠ Y2;Y1Z ) |= (X ↠ Y1Y2|Z ).
We show: Ih(Y1;Y2Z |X ) = Ih(Y2;Y1Z |X ) = 0 ⇒ Ih(Y1Y2;Z |X ) = 0

Suffices to show: Ih(Y1;Y2Z |X ) + Ih(Y2;Y1Z |X ) ≥ Ih(Y1Y2;Z |X )

Why??
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Discussion

Every FD/MVD implication can be derived from a Shannon inequality,
where all terms are of the form h(V |U) or
Ih(V ;W |U) [Kenig and Suciu, 2022].

What about general CIs? Surprisingly, there exists CIs where the
conditional implication holds Ih(· · · ) = 0 ⇒ Ih(· · · ) = 0, but the
corresponding inequality fails [Kaced and Romashchenko, 2013].

Limitations of the entropic method: restricted to FD/MVDs. Next
week: more general constraints, incomplete databases, probabilistic
databases.
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