CS294-248 Special Topics in Database Theory Unit 6: Constraints, Incomplete and Probabilistic Databases (Part 2)

Dan Suciu
University of Washington

Outline

- Tuesday: Generalized Constraints, Semantics Optimization.
- Today: Repairs, Incomplete Databases

Recap: Generalized Dependencies

Tuple-Generating Dependency (TGD):

$$
\forall \boldsymbol{x}\left(A_{1} \wedge \ldots \wedge A_{m} \Rightarrow \exists \boldsymbol{y}\left(B_{1} \wedge \cdots \wedge B_{k}\right)\right)
$$

The TGD is full if there is no $\exists \boldsymbol{y}$

Equality-Generating Dependency (EGD):

$$
\forall \mathbf{x}\left(A_{1} \wedge \ldots \wedge A_{m} \Rightarrow x_{i}=x_{j}\right)
$$

Recap: Chase

Given $\theta: A \rightarrow Q$, a chase step is $Q \xrightarrow{\sigma, \theta} Q^{\prime}$, where

- If $\sigma \equiv \forall \boldsymbol{x}(A \Rightarrow \exists \boldsymbol{y} B)$, then $Q^{\prime}=Q \wedge \theta(B)$.
- If $\sigma \equiv \forall \boldsymbol{x}\left(A \Rightarrow\left(x_{i}=x_{j}\right)\right)$, then $Q^{\prime}=Q\left[x_{j} / x_{i}\right]$.

Key property: $\sigma \models Q \equiv Q^{\prime}$.

Repairs for FDs

Definition

Consider a set of constraints Σ and a database \boldsymbol{D}.
$\boldsymbol{D} \not \vDash \Sigma$.

The Database Repair Problem
Find another database \boldsymbol{D}^{\prime} such that $\boldsymbol{D}^{\prime} \models \Sigma$ and $\left|\boldsymbol{D} \Delta \boldsymbol{D}^{\prime}\right|$ is minimal.
(Recall: $S_{1} \Delta S_{2}=\left(S_{1}-S_{2}\right) \cup\left(S_{2}-S_{1}\right)$.)

Equivalently: perform a minimum number of updates to satisfy Σ.

The FD-Repair Problem

Σ is a set of FDs

The updates are restricted to be be deletions

Given \boldsymbol{D}, delete minimum number of tuples to obtain $\boldsymbol{D}^{\prime} \subseteq \boldsymbol{D}$ and $\boldsymbol{D}^{\prime} \models \boldsymbol{\Sigma}$.

We study the complexity as a function of $|\boldsymbol{D}|$ following [Livshits et al., 2020].

Example 1: Repairing $A \rightarrow B$

$$
A \rightarrow B
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Example 1: Repairing $A \rightarrow B$

$$
A \rightarrow B
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\ldots
a_{1}	b_{2}	c_{2}	\ldots
a_{2}	b_{1}	c_{1}	\ldots
a_{2}	b_{1}	c_{2}	\ldots
a_{2}	b_{2}	c_{3}	\ldots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Group the tuples by A In each group a_{1}, a_{2}, \ldots keep only one b_{j} (the most frequent).

Example 1: Repairing $A \rightarrow B C$

$$
A \rightarrow B C
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Example 1: Repairing $A \rightarrow B C$

$$
A \rightarrow B C
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Same as before: treat $B C$ as a single attribute.

Example 3: $A \rightarrow B \rightarrow C$

$$
A \rightarrow B \rightarrow C
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Example 3: $A \rightarrow B \rightarrow C$

$$
A \rightarrow B \rightarrow C
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?
This is NP-hard!

Reduction from Max-SAT

Theorem ([Williams, 2016])
The problem given a 2CNF, check $\geq 7 / 10$ clauses can be satisfied is NP-complete.

Proof for $A \rightarrow B \rightarrow C$

Start with a $2 C N F$ formula $\Phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$
Create a relation instance $R(A, B, C)$ as follows:

Proof for $A \rightarrow B \rightarrow C$

Start with a 2CNF formula $\Phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$
Create a relation instance $R(A, B, C)$ as follows:

For each clause $C_{i}=((\neg) X \vee(\neg) Y)$ add two tuples to R

- Tuple $(i, X, 0)$ or $(i, X, 1)$, depending on whether $\neg X$ or X
- Tuple $(i, Y, 0)$ or $(i, Y, 1)$, depending on whether $\neg Y$ or Y

Proof for $A \rightarrow B \rightarrow C$

Start with a 2 CNF formula $\Phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$
Create a relation instance $R(A, B, C)$ as follows:

For each clause $C_{i}=((\neg) X \vee(\neg) Y)$ add two tuples to R

- Tuple $(i, X, 0)$ or $(i, X, 1)$, depending on whether $\neg X$ or X
- Tuple $(i, Y, 0)$ or $(i, Y, 1)$, depending on whether $\neg Y$ or Y

Claim $\geq 7 n / 10$ clauses can be satisfied iff \exists repair of size $\geq 7 n / 10$.

Proof for $A \rightarrow B \rightarrow C$

Start with a 2CNF formula $\Phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$
Create a relation instance $R(A, B, C)$ as follows:
For each clause $C_{i}=((\neg) X \vee(\neg) Y)$ add two tuples to R

- Tuple $(i, X, 0)$ or $(i, X, 1)$, depending on whether $\neg X$ or X
- Tuple $(i, Y, 0)$ or $(i, Y, 1)$, depending on whether $\neg Y$ or Y

Claim $\geq 7 n / 10$ clauses can be satisfied iff \exists repair of size $\geq 7 n / 10$.
Proof $A \rightarrow B$ ensures that we retain ≤ 1 tuple per clause
$B \rightarrow C$ ensures that we assign consistent values to the same variable.

Discussion so Far

$A \rightarrow B$ in PTIME

$A \rightarrow B C$ in PTIME

$A \rightarrow B \rightarrow C$ NP-hard

What's the general rule?

Unusual FDs

We are familiar with $A B \rightarrow C D$ or $A \rightarrow C$.

What does $A \rightarrow \emptyset$ mean?

Unusual FDs

We are familiar with $A B \rightarrow C D$ or $A \rightarrow C$.

What does $A \rightarrow \emptyset$ mean?
It is always true.

Unusual FDs

We are familiar with $A B \rightarrow C D$ or $A \rightarrow C$.

What does $A \rightarrow \emptyset$ mean?
It is always true.

What does $\emptyset \rightarrow A$ mean?

Unusual FDs

We are familiar with $A B \rightarrow C D$ or $A \rightarrow C$.

What does $A \rightarrow \emptyset$ mean?
It is always true.

What does $\emptyset \rightarrow A$ mean?
A has a single value.

Example 4: $\emptyset \rightarrow A$

$$
\emptyset \rightarrow A
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Example 4: $\emptyset \rightarrow A$

$$
\emptyset \rightarrow A
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

We keep a single value of A, namely the most frequent one.

Example 4: $\emptyset \rightarrow A$

$$
\emptyset \rightarrow A
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

We keep a single value of A, namely the most frequent one.

Now consider:

$$
\begin{aligned}
& \emptyset \rightarrow A \\
& B \rightarrow C
\end{aligned}
$$

Compute optimal repair. How?

Compute optimal repair. How?

Example 4: $\emptyset \rightarrow A$

$$
\emptyset \rightarrow A
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?
We keep a single value of A, namely the most frequent one.

Now consider:

$$
\begin{aligned}
& \emptyset \rightarrow A \\
& B \rightarrow C
\end{aligned}
$$

Compute optimal repair. How?
For each $A=a_{i}$ compute optimal repair of $B \rightarrow C$, keep the largest.

Example 4: $\emptyset \rightarrow A$

$$
\emptyset \rightarrow A
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?
We keep a single value of A, namely the most frequent one.

Now consider:

$$
\begin{aligned}
& \emptyset \rightarrow A \\
& B \rightarrow C
\end{aligned}
$$

Compute optimal repair. How?
For each $A=a_{i}$ compute optimal repair of $B \rightarrow C$, keep the largest.

Consensus rule: if Σ contains $\emptyset \rightarrow A$, then compute the optimal repair for each value $A=a_{1}, a_{2} \ldots$, return the largest.

Example 5

$$
\begin{aligned}
& A \rightarrow B \\
& A C \rightarrow D
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Example 5

$$
\begin{aligned}
& A \rightarrow B \\
& A C \rightarrow D
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

For each value $A=a_{i}$, compute the optimal repair of the residual:

$$
\begin{aligned}
& \emptyset \rightarrow B \\
& C \rightarrow D
\end{aligned}
$$

Use the consensus rule.

Example 5

$$
\begin{aligned}
& A \rightarrow B \\
& A C \rightarrow D
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

For each value $A=a_{i}$, compute the optimal repair of the residual:

$$
\begin{aligned}
& \emptyset \rightarrow B \\
& C \rightarrow D
\end{aligned}
$$

Use the consensus rule.

Compute optimal repair. How?
Common LHS rule: if all LHS contain $A, \Sigma=\left\{A X_{1} \rightarrow Y_{1}, A X_{2} \rightarrow Y_{2}, \ldots\right\}$, then repair separately each $A=a_{i}$.

Example 6

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow A
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Example 6

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow A
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Find a maximal matching the bipartite graph $\left(A, B, \Pi_{A B}(R)\right)$.

A maximal matching in a bipartite graph can be found in PTIME using the "Hungarian Algorithm".

Last Example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow A \\
& A B \rightarrow C
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

Compute optimal repair. How?

Last Example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow A \\
& A B \rightarrow C
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

For each pair $A=a_{i}, B=b_{j}$ compute optimal repair.

Weight of edge $\left(a_{i}, b_{j}\right)$ is the size of the repair.

Find a maximal weighted matching in bipartite graph.

Last Example

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow A \\
& A B \rightarrow C
\end{aligned}
$$

A	B	C	D
a_{1}	b_{1}	c_{1}	\cdots
a_{1}	b_{2}	c_{1}	\cdots
a_{1}	b_{2}	c_{2}	\cdots
a_{2}	b_{1}	c_{1}	\cdots
a_{2}	b_{1}	c_{2}	\cdots
a_{2}	b_{2}	c_{3}	\cdots
a_{3}	\cdots	\cdots	\cdots
	\cdots		

For each pair $A=a_{i}, B=b_{j}$ compute optimal repair.

Weight of edge $\left(a_{i}, b_{j}\right)$ is the size of the repair.

Find a maximal weighted matching in bipartite graph.

Marriage Rule

The Algorithm

[Livshits et al., 2020]
Given Σ, R, compute minimal repair that satisfies Σ.

- If $\Sigma=\emptyset$ then return R.
- Common LHS Rule If all LHS contain A, then repair each $A=a_{i}$.

Return their union.

The Algorithm

[Livshits et al., 2020]
Given Σ, R, compute minimal repair that satisfies Σ.

- If $\Sigma=\emptyset$ then return R.
- Common LHS Rule If all LHS contain A, then repair each $A=a_{j}$.

Return their union.

- Consensus Rule If Σ contains $\emptyset \rightarrow A$, then repair each $A=a_{i}$. Return the best repair.

The Algorithm

[Livshits et al., 2020]
Given Σ, R, compute minimal repair that satisfies Σ.

- If $\Sigma=\emptyset$ then return R.
- Common LHS Rule If all LHS contain A, then repair each $A=a_{i}$.

Return their union.

- Consensus Rule If Σ contains $\emptyset \rightarrow A$, then repair each $A=a_{i}$. Return the best repair.
- Marriage Rule If $\boldsymbol{U}^{+}=\boldsymbol{V}^{+}$and every rule has on the LHS either \boldsymbol{U} or \boldsymbol{V}, then compute optimal repair for all pairs $\boldsymbol{U}=\boldsymbol{u}_{i}, \boldsymbol{V}=\boldsymbol{v}_{j}$

Return maximal matching in weighted bipartite graph.

The Algorithm

[Livshits et al., 2020]
Given Σ, R, compute minimal repair that satisfies Σ.

- If $\Sigma=\emptyset$ then return R.
- Common LHS Rule If all LHS contain A, then repair each $A=a_{i}$.

Return their union.

- Consensus Rule If Σ contains $\emptyset \rightarrow A$, then repair each $A=a_{i}$. Return the best repair.
- Marriage Rule If $\boldsymbol{U}^{+}=\boldsymbol{V}^{+}$and every rule has on the LHS either \boldsymbol{U} or \boldsymbol{V}, then compute optimal repair for all pairs $\boldsymbol{U}=\boldsymbol{u}_{i}, \boldsymbol{V}=\boldsymbol{v}_{j}$

Return maximal matching in weighted bipartite graph.

- None of the above? Fail The problem is NP-hard.

Discussion

- Repairing for FDs: Dichotomy Theorem in [Livshits et al., 2020]. For each Σ, the the problem is either in PTIME or NP-hard.
- Data Exchange. Constraints are TGDs, LHS restricted to an input source database, RHS restricted to a target database. The repair is done via chase.
- A few other hardness results are known for repairing specific constraints (e.g. denial constraints).
- Related to the MAP problem in graphical models.

Incomplete Databases

Incomplete Databases

- A simple, pure theoretical concept that allows us to reason about different possible states of the database.
- Originally introduced by Imielinski and Lipski [Imielinski and Jr., 1984].
- I used these references: [Abiteboul et al., 1995, Chap.19], [Green and Tannen, 2006], [Libkin, 2014].

Definition

Recall: a database instance is $\boldsymbol{D}=\left(R_{1}^{D}, R_{2}^{D}, \ldots\right)$.
Let \mathcal{N} be the set of all database instances.

Definition

An incomplete database is a set $\mathcal{I} \subseteq \mathcal{N}$.

Example all possible repairs of \boldsymbol{D} w.r.t. $\boldsymbol{\Sigma}, \mathcal{I}=\left\{\boldsymbol{D}_{1}, \boldsymbol{D}_{2}, \ldots\right\}$.

Possible Worlds, PWD.

Problems

How do we represent an incomplete database compactly?

How do we compute queries over incomplete databases?

Representation

Representations

- Codd tables.
- v-tables of naive tables.
- c-tables or conditional-tables. Special case:
- ?-tables
- or-tables

Representations

- Codd tables.
- v-tables of naive tables.
- c-tables or conditional-tables. Special case:
- ?-tables
- or-tables

v-Tables

Dom $=$ and infinite domain of values: a, b, c, \ldots Null $=$ an infinite set of marked NULLs: $\perp_{1}, \perp_{2}, \ldots$

v-Tables

Dom $=$ and infinite domain of values: a, b, c, \ldots
Null $=$ an infinite set of marked NULLs: $\perp_{1}, \perp_{2}, \ldots$

Definition

A v-table (a.k.a. naive table) is a finite set $R^{\prime} \subseteq(\text { Dom } \cup \text { Null })^{k}$. Its semantics is: $\left[\left[R^{\prime}\right]\right]=\left\{\nu\left(R^{\prime}\right) \mid \nu:\right.$ Null \rightarrow Dom $\}$.

v-Tables

Dom $=$ and infinite domain of values: a, b, c, \ldots
Null $=$ an infinite set of marked NULLs: $\perp_{1}, \perp_{2}, \ldots$

Definition

A v-table (a.k.a. naive table) is a finite set $R^{l} \subseteq(\text { Dom } \cup \text { Null })^{k}$. Its semantics is: $\left[\left[R^{\prime}\right]\right]=\left\{\nu\left(R^{\prime}\right) \mid \nu:\right.$ Null \rightarrow Dom $\}$.

Example $R^{\prime}=$

Name	City
Alice	\perp_{1}
Bob	SF
Carol	\perp_{2}
Dave	\perp_{1}

What is $\left[\left[R^{\prime}\right]\right]$?

v-Tables

Dom $=$ and infinite domain of values: a, b, c, \ldots
Null $=$ an infinite set of marked NULLs: $\perp_{1}, \perp_{2}, \ldots$

Definition

A v-table (a.k.a. naive table) is a finite set $R^{l} \subseteq(\text { Dom } \cup \text { Null })^{k}$. Its semantics is: $\left[\left[R^{\prime}\right]\right]=\left\{\nu\left(R^{\prime}\right) \mid \nu:\right.$ Null \rightarrow Dom $\}$.

Example $R^{\prime}=$

Name	City
Alice	\perp_{1}
Bob	SF
Carol	\perp_{2}
Dave	\perp_{1}

What is $\left[\left[R^{\prime}\right]\right]$?

Name	City
Alice	a
Bob	SF
Carol	a
Dave	a

Name	City
Alice	a
Bob	SF
Carol	b
Dave	a

Name	City
Alice	a
Bob	SF
Carol	c
Dave	a

Single restriction: Alice and Dave are in the same "City".

Codd Tables

Definition

A Codd table is a v-table where all marked nulls are distinct.

Codd Tables

Definition

A Codd table is a v-table where all marked nulls are distinct.

Example $R^{\prime}=$

Name	City
Alice	\perp_{1}
Bob	SF
Carol	\perp_{2}
Dave	\perp_{3}

Codd Tables

Definition

A Codd table is a v-table where all marked nulls are distinct.

Example $R^{\prime}=$

Name	City
Alice	\perp_{1}
Bob	SF
Carol	\perp_{2}
Dave	\perp_{3}

$$
\text { What is }\left[\left[R^{\prime}\right]\right] ?
$$

Same as before, but now there is no restriction for Alice and Dave to be in the same city.

C-Tables

Definition

A C-table is a v-table where tuples are annotated with Boolean formulas, plus one global formula Φ.

C-Tables

Definition

A C-table is a v-table where tuples are annotated with Boolean formulas, plus one global formula Φ.

Example $R^{\prime}=$

Name	City	
Alice	\perp_{1}	
X_{1}		
Bob	SF	
$X_{1} \wedge\left(\perp_{2}={ }^{\prime} \mathrm{SF}^{\prime}\right)$		
Carol	\perp_{2}	true
Dave	\perp_{1}	X_{2}
$\Phi=X_{1} \vee$		X_{2}

C-Tables

Definition

A C-table is a v-table where tuples are annotated with Boolean formulas, plus one global formula Φ.

Example $R^{\prime}=$

Name	City	
Alice	\perp_{1}	X_{1}
Bob	SF	$X_{1} \wedge\left(\perp_{2}={ }^{\prime} \mathrm{SF}^{\prime}\right)$
Carol	\perp_{2}	true
Dave	\perp_{1}	X_{2}
$=X_{1}$		

Alice, Bob present only if $X_{1}=$ true.

Bob is present only if, in addition, Carol lives in SF

Dave is present only if $X_{2}=$ true.
Alice or Dave or both are present.

Special case of C-Tables: Maybe Tables

Definition

A maybe-table, or ?-table is a conventional table R^{I} where each tuple is annotated by a ?. Semantics: $\left[\left[R^{\prime}\right]\right]=\left\{R \mid R \subseteq R^{\prime}\right\}$.

Special case of C-Tables: Maybe Tables

Definition

A maybe-table, or ?-table is a conventional table R^{\prime} where each tuple is annotated by a ?. Semantics: $\left[\left[R^{\prime}\right]\right]=\left\{R \mid R \subseteq R^{\prime}\right\}$.

Example $R^{\prime}=$

Name	City	
Alice	Seattle	$?$
Bob	SF	$?$
Carol	Boston	$?$
Dave	Seattle	

Semantics: $\mathcal{P}\left(R^{\prime}\right)$ (16 possible worlds).
This is a special of a c-table. Why?

Special case of C-Tables: OR-Table

Definition

An or-table is like a conventional table where each value can be an or-set.
An or-set, is a set whose meaning is "exactly one of its elements". E.g. $\langle a, b, c\rangle$ means a or b or c.

Special case of C-Tables: OR-Table

Definition

An or-table is like a conventional table where each value can be an or-set.
An or-set, is a set whose meaning is "exactly one of its elements". E.g. $\langle a, b, c\rangle$ means a or b or c.

Example $R^{I}=$

$$
\text { What is }\left[\left[R^{\prime}\right]\right] ?
$$

Name	City
Alice	\langle SF, Boston \rangle
Bob	SF
Carol	Boston
Dave	\langle Seattle, SF \rangle

Special case of C-Tables: OR-Table

Definition

An or-table is like a conventional table where each value can be an or-set.
An or-set, is a set whose meaning is "exactly one of its elements". E.g. $\langle a, b, c\rangle$ means a or b or c.

Example $R^{\prime}=$

Name	City
Alice	\langle SF, Boston \rangle
Bob	SF
Carol	Boston
Dave	\langle Seattle, SF \rangle

What is $\left[\left[R^{/}\right]\right] ?$

Name	City
Alice	SF
Bob	SF
Carol	Boston
Dave	Seattle

Name	City
Alice	SF
Bob	SF
Carol	Boston
Dave	SF

Name	City
Alice	Boston
Bob	SF
Carol	Boston
Dave	Seattle

Name	City
Alice	Boston
Bob	SF
Carol	Boston
Dave	SF

Discussion

- Incomplete databases are a very general abstraction, meant to capture several scenarios:
- Standard NULLs define an incomplete database.
- Repairs for FDs can be described as an incomplete database.
- Or-sets are a natural way to express alternatives.
- We saw incomplete tables; this extends to incomplete databases.
- We used the Closed World Assumption, CWA. Alternative: Open World Assumption, OWA.
- An incomplete database system: [Antova et al., 2007].

Queries on Incomplete Databases

Querying an Incomplete Database

Fix a query Q.

Definition

If $\mathcal{I}=\left\{\boldsymbol{D}_{1}, \boldsymbol{D}_{2}, \ldots\right\}$ is an incomplete database, then

$$
Q(\mathcal{I}) \stackrel{\text { def }}{=}\left\{Q\left(\boldsymbol{D}_{1}\right), Q\left(\boldsymbol{D}_{2}\right), \ldots\right\}
$$

How do we represent $Q(\mathcal{I})$?

Closed Representation System

Fix a representation system \mathcal{R} (e.g. v-tables) and a query language \mathcal{L} (e.g. CQ or FO).

Definition

\mathcal{R} is closed under \mathcal{L}, if for any $\boldsymbol{D}^{\prime} \in \mathcal{R}$ and any query $Q \in \mathcal{L}$, there exists a representation A^{\prime} for the query answer, in other words $\left[\left[A^{\prime}\right]\right]=Q\left(\left[\left[\boldsymbol{D}^{\prime}\right]\right]\right)$.

Closed Representation Systems

Fact

V-tables are not closed under FO:

$$
\text { Proof } Q(X)=R(X) \wedge \neg S(X), \quad R=\{1,2\}, S^{\prime}=\{\perp\}
$$

Then $Q\left(\left[\left[R, S^{\prime}\right]\right]\right)=\{\{1,2\},\{1\},\{2\}\}$; not representable as a v-table.

Closed Representation Systems

Fact

V-tables are not closed under FO:
Proof $Q(X)=R(X) \wedge \neg S(X), \quad R=\{1,2\}, S^{\prime}=\{\perp\}$
Then $Q\left(\left[\left[R, S^{\prime}\right]\right]\right)=\{\{1,2\},\{1\},\{2\}\}$; not representable as a v-table.

Theorem
C-tables are closed under FO.

Discussion

Computing and representing all possible answers $Q(\mathcal{I})$ is difficult, and often not very informative.

A better alternative: certain answers

Also an option (but less desirable): possible answers

Certain Answers and Possible Answers

Definition

A certain tuple is a tuple t s.t. $\forall \boldsymbol{D} \in \mathcal{I}, t \in Q(\boldsymbol{D})$. Their set: $\operatorname{cert}(Q, \mathcal{I})$ A possible tuple is a tuple t s.t. $\exists \boldsymbol{D} \in \mathcal{I}, t \in Q(\boldsymbol{D})$. Their set: $\operatorname{poss}(Q, \mathcal{I})$

Equivalently:

$$
\begin{aligned}
& \operatorname{cert}(Q, \mathcal{I})=\bigcap\{Q(\boldsymbol{D}) \mid \boldsymbol{D} \in \mathcal{I}\} \\
& \operatorname{poss}(Q, \mathcal{I})=\bigcup\{Q(\boldsymbol{D}) \mid \boldsymbol{D} \in \mathcal{I}\}
\end{aligned}
$$

Example

Querying v-tables:

$$
\begin{gathered}
R^{\prime}=\begin{array}{|l|l|}
\hline x & \perp_{1} \\
y & \perp_{1} \\
z & \perp_{2}
\end{array} \\
Q(X, Z)=R(X, Y) \wedge S(Y, Z)
\end{gathered} \quad S^{\prime}=\begin{array}{|l|l|}
\hline \perp_{1} & a \\
\perp_{2} & b \\
\perp_{2} & c \\
\perp_{3} & d \\
\hline
\end{array}
$$

What are the certain tuples? The possible tuples?

Example

Querying v-tables:

$$
Q(X, Z)=R(X, Y) \wedge S(Y, Z)
$$

$$
R^{\prime}=\begin{array}{|l|l|}
\hline x & \perp_{1} \\
y & \perp_{1} \\
z & \perp_{2} \\
\hline
\end{array} \quad S^{\prime}=\begin{array}{|l|l|}
\hline \perp_{1} & a \\
\perp_{2} & b \\
\perp_{2} & c \\
\perp_{3} & d \\
\hline
\end{array}
$$

What are the certain tuples? The possible tuples?
$\operatorname{cert}(Q, \mathcal{I})=$

x	a
y	a
z	b
z	c

Strong/Weak Representation Systems

Following [Libkin, 2014].
Fix a representation system \mathcal{R}, query language \mathcal{L}.
\mathcal{R} is a strong representation system for \mathcal{L} if it is closed under \mathcal{L}, i.e. for all $D^{\prime} \in \mathcal{R}, Q \in \mathcal{L}, \exists A^{\prime} \in \mathcal{R}$ such that:

$$
\left[\left[A^{\prime}\right]\right]=\left\{Q(\boldsymbol{D}) \mid \boldsymbol{D} \in\left[\left[\boldsymbol{D}^{\prime}\right]\right]\right\}
$$

\mathcal{R} is a weak representation system for \mathcal{L} if for all $D^{\prime} \in \mathcal{R}, Q \in \mathcal{L}, \exists A^{\prime} \in \mathcal{R}$ such that, for all $q \in \mathcal{L}$

$$
\operatorname{cert}\left(q,\left[\left[A^{\prime}\right]\right]\right)=\operatorname{cert}\left(q,\left\{Q(\boldsymbol{D}) \mid \boldsymbol{D} \in\left[\left[\boldsymbol{D}^{\prime}\right]\right]\right\}\right)
$$

In other words, we cannot represent the possible answers exactly, but we can represent all the certain answers on all future queries q.

V-Tables are a Weak Representation System for UCQs

Theorem
V-tables are a weak representation system for UCQs.

V-Tables are a Weak Representation System for UCQs

Theorem
V-tables are a weak representation system for UCQs.

$$
R^{\prime}=\begin{array}{|l|l}
\hline x & \perp_{1} \\
y & \perp_{1} \\
z & \perp_{2} \\
\hline
\end{array} S^{\prime}=\begin{array}{|l|l|}
\hline \perp_{1} & a \\
\perp_{2} & b \\
\perp_{2} & c \\
\perp_{3} & d \\
\hline
\end{array}
$$

$Q(X, Y, Z)=R(X, Y) \wedge S(Y, Z)$

V-Tables are a Weak Representation System for UCQs

Theorem
V-tables are a weak representation system for UCQs.

$$
Q\left(R^{\prime}, S^{\prime}\right)=\begin{array}{|c|c|c|}
\hline x & \perp_{1} & a \\
y & \perp_{1} & a \\
z & \perp_{2} & b \\
z & \perp_{2} & c \\
\hline
\end{array}
$$

$$
Q(X, Y, Z)=R(X, Y) \wedge S(Y, Z)
$$

Discussion

- Does SQL adopt the possible world semantics of Codd tables?

Discussion

- Does SQL adopt the possible world semantics of Codd tables?

NO: if city $=N U L L$ then city $=^{\prime} S F^{\prime}$ or city $!=^{\prime} S F^{\prime}$ should be true, but in SQL it is unknown.

Discussion

- Does SQL adopt the possible world semantics of Codd tables?

NO: if city $=N U L L$ then city $=^{\prime} S F^{\prime}$ or city! $=^{\prime} S F^{\prime}$ should be true, but in SQL it is unknown.

- What is the complexity of computing $\operatorname{cert}\left(Q, \boldsymbol{D}^{\prime}\right)$ when Q is a CQ and \boldsymbol{D}^{\prime} is a v-database?

Discussion

- Does SQL adopt the possible world semantics of Codd tables?

NO: if city $=N U L L$ then city $=^{\prime} S F^{\prime}$ or city! $=^{\prime} S F^{\prime}$ should be true, but in SQL it is unknown.

- What is the complexity of computing $\operatorname{cert}\left(Q, \boldsymbol{D}^{\prime}\right)$ when Q is a CQ and \boldsymbol{D}^{\prime} is a v-database?

In PTIME! Compute Q naively on the representation, return tuples that don't have a \perp.

Discussion

- Does SQL adopt the possible world semantics of Codd tables?

NO: if city $=N U L L$ then city $=^{\prime} S F^{\prime}$ or city $!=^{\prime} S F^{\prime}$ should be true, but in SQL it is unknown.

- What is the complexity of computing $\operatorname{cert}\left(Q, \boldsymbol{D}^{\prime}\right)$ when Q is a CQ and \boldsymbol{D}^{\prime} is a v-database?

In PTIME! Compute Q naively on the representation, return tuples that don't have a \perp.

- Theorem when Q is in FO, then the complexity of $\operatorname{cert}\left(Q, \boldsymbol{D}^{\prime}\right)$ where \boldsymbol{D}^{\prime} is a v-database is co-NP hard.

Announcement

- No lectures next week! Join the workshop at Simons.
- The following week: two guest lectures by Val Tannen on semirings and their applications to databases.

Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison-Wesley.
Antova, L., Koch, C., and Olteanu, D. (2007).
From complete to incomplete information and back.
In Chan, C. Y., Ooi, B. C., and Zhou, A., editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-14, 2007, pages 713-724. ACM.

Green, T. J. and Tannen, V. (2006).
Models for incomplete and probabilistic information.
IEEE Data Eng. Bull., 29(1):17-24.
Imielinski, T. and Jr., W. L. (1984).
Incomplete information in relational databases.
J. ACM, 31(4):761-791.

Libkin, L. (2014).
Incomplete data: what went wrong, and how to fix it.
In Hull, R. and Grohe, M., editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS'14, Snowbird, UT, USA, June 22-27, 2014, pages 1-13. ACM.

Livshits, E., Kimelfeld, B., and Roy, S. (2020).
Computing optimal repairs for functional dependencies.
ACM Trans. Database Syst., 45(1):4:1-4:46.
Williams, R. (2016).
Exact algorithms for maximum two-satisfiability.
In Encyclopedia of Algorithms, pages 683-688.

