CS294-248 Special Topics in Database Theory Unit 7: Semirings and K-Relations

Dan Suciu

University of Washington

Outline

• Today: Semirings, K-Relations; positive RA only.

• Thursday: FO over Semirings (guest lecturer Val Tannen)

Optimization Rules

Semirings

Dan Suciu

Topics in DB Theory: Unit 7

Fall 2023

3/38

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

• Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.

- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.
- Provenance: R(a, b) was obtained as follows

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

• Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.

- Linear algebra: R[i,j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.

• Provenance: R(a, b) was obtained as follows

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i, j] = -0.5.

• Security: R(a, b) is secret; R(c, d) is top secret.

• Provenance: R(a, b) was obtained as follows

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i, j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.

• Provenance: R(a, b) was obtained as follows

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i, j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.
- Provenance: R(a, b) was obtained as follows

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

- Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
- Linear algebra: R[i, j] = -0.5.
- Security: R(a, b) is secret; R(c, d) is top secret.
- Provenance: R(a, b) was obtained as follows

Definition

A monoid is a tuple $\boldsymbol{M} = (M, \circ, \mathbf{1})$, where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $\mathbf{1} \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

Definition

A monoid is a tuple $\boldsymbol{M} = (M, \circ, \mathbf{1})$, where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $\mathbf{1} \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

The monoid is commutative if $x \circ y = y \circ x$.

Definition

A monoid is a tuple $\boldsymbol{M} = (M, \circ, \mathbf{1})$, where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $\mathbf{1} \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

The monoid is commutative if $x \circ y = y \circ x$.

The monoid is a group if $\forall x \in M$, $\exists y \in M$ s.t. $x \circ y = y \circ x = \mathbf{1}$.

Definition

A monoid is a tuple $\boldsymbol{M} = (M, \circ, \mathbf{1})$, where:

- $\circ: M \times M \to M$ is a binary function (operation).
- $\mathbf{1} \in M$ is an element.
- \circ is associative: $(x \circ y) \circ z = x \circ (y \circ z)$.
- 1 is a left and right identity: $1 \circ x = x \circ 1 = x$.

The monoid is commutative if $x \circ y = y \circ x$.

The monoid is a group if $\forall x \in M$, $\exists y \in M$ s.t. $x \circ y = y \circ x = 1$. prove that y is unique Notation: $y = x^{-1}$.

Examples

Which ones are groups? $(\mathbb{R}, +, 0)$

 $(\mathbb{R},*,1)$

 $(\mathbb{R}^{n \times n}, \cdot, I_n)$: $n \times n$ matrices w/ multiplication

 (S_n, \circ, id_n) permutations of *n* elements w/ composition

 $(2^{\Omega}, \cap, \Omega)$

 $(2^\Omega, \cup, \emptyset)$

Semirings

Definition

A semiring is a tuple $\boldsymbol{S} = (S, \oplus, \otimes, \boldsymbol{0}, \boldsymbol{1})$ where:

- $(\boldsymbol{S},\oplus,\boldsymbol{0})$ is a commutative monoid.
- $(\boldsymbol{S},\otimes,\boldsymbol{1})$ is a monoid.
- ⊗ distributes over ⊕: x ⊗ (y ⊕ z) =(x ⊗ y) ⊕ (x ⊗ z) (y ⊕ z) ⊗ x =(y ⊗ x) ⊕ (z ⊗ x)
 0 is absorbing, also called annihilating: x ⊗ 0 = 0 ⊗ x = 0

Semirings

Definition

A semiring is a tuple $\boldsymbol{S} = (S, \oplus, \otimes, \boldsymbol{0}, \boldsymbol{1})$ where:

- $(\boldsymbol{S},\oplus,\boldsymbol{0})$ is a commutative monoid.
- $(\boldsymbol{S},\otimes,\boldsymbol{1})$ is a monoid.
- ⊗ distributes over ⊕: x ⊗ (y ⊕ z) =(x ⊗ y) ⊕ (x ⊗ z) (y ⊕ z) ⊗ x =(y ⊗ x) ⊕ (z ⊗ x)
 0 is absorbing, also called annihilating: x ⊗ 0 = 0 ⊗ x = 0
- ${m S}$ is a commutative semiring if \otimes is commutative.

Semirings

Definition

A semiring is a tuple $\boldsymbol{S} = (S, \oplus, \otimes, \boldsymbol{0}, \boldsymbol{1})$ where:

- $(\boldsymbol{S},\oplus,\boldsymbol{0})$ is a commutative monoid.
- $(\boldsymbol{S},\otimes,\boldsymbol{1})$ is a monoid.

 ⊗ distributes over ⊕: x ⊗ (y ⊕ z) =(x ⊗ y) ⊕ (x ⊗ z) (y ⊕ z) ⊗ x =(y ⊗ x) ⊕ (z ⊗ x)
0 is absorbing, also called annihilating: x ⊗ 0 = 0 ⊗ x = 0

- ${m s}$ is a commutative semiring if \otimes is commutative.
- A ring is a semiring where $\forall x$ has an additive inverse -x.

A field is a commutative ring where $\forall x \neq \mathbf{0}$ has a multiplicative inverse x^{-1} .

K-Relaltions 0000000000000000 Provenance Polynomials

Optimization Rules

Examples

 $\mathbb{B}=(\{0,1\},\vee,\wedge,0,1)$ Booleans

 $(\mathbb{R},+,\cdot,0,1)$

 $(\mathbb{N},+,\cdot,0,1)$

 $(\mathbb{R}^{n \times n}, +, \cdot, \mathbf{0}_{n \times n}, \mathbf{I}_n)$ Matrices

 $\mathbb{T} = ([0,\infty], \min, +,\infty, 0)$ Tropical Semiring

 $\begin{array}{l} (2^\Omega,\cup,\cap,\emptyset,\Omega)\\ \text{Subsets of }\Omega \end{array}$

 $(\mathbb{R}[x], +, \cdot, 0, 1)$ Polynomials

 $\mathbb{F} = ([0,1], \mathsf{max}, \mathsf{min}, 0, 1)$ "Fuzzy Logic" semiring

Discussion

- Semirings belong to Algebra, with monoids, groups, rings, fields.
- Most semirings of interest to us are not rings, e.g. $\mathbb B$ or $\mathbb N$.
- We will only consider commutative semirings, $x \otimes y = y \otimes x$.
- We often write $+, \cdot$ instead of \oplus, \otimes

E.g.
$$x^2y + 3z$$
 means $x \otimes x \otimes y \oplus (\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}) \otimes z$

K-Relations

Overview

A standard relation associates to each tuple a Boolean value: 0 or 1.

A K-relation associates to each tuple a value from a semiring K.

By choosing different semirings, we can support different applications.

K-Relations

Fix an infinite domain Dom and a semiring $\mathbf{K} = (\mathbf{K}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$.

Definition ([Green et al., 2007])

A K-relation of arity *m* is a function $R : \text{Dom}^m \to K$ with "finite support": Supp $(R) \stackrel{\text{def}}{=} \{t \in \text{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

K-Relations

Fix an infinite domain Dom and a semiring $\mathbf{K} = (\mathbf{K}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$.

Definition ([Green et al., 2007])

A K-relation of arity *m* is a function $R : \text{Dom}^m \to K$ with "finite support": Supp $(R) \stackrel{\text{def}}{=} \{t \in \text{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

<u>A B-relation:</u>

Name	City	
Alice	SF	1
Alice	NYC	0
Bob	Seattle	1
~		-

Set semantics:

2 tuples

K-Relations

Fix an infinite domain Dom and a semiring $\mathbf{K} = (\mathbf{K}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$.

Definition ([Green et al., 2007])

A K-relation of arity *m* is a function $R : \text{Dom}^m \to K$ with "finite support": Supp $(R) \stackrel{\text{def}}{=} \{t \in \text{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

<u>A B-relation:</u>		
Name	City	
Alice	SF	1
Alice	NYC	0
Bob	Seattle	1
Set semantics:		

2 tuples

ł	ℕ-re	lation	:

	Name	City	
	Alice	SF	5
	Alice	NYC	0
	Bob	Seattle	3
Bag semantics:			
8 tuples			

K-Relations

Fix an infinite domain Dom and a semiring $\boldsymbol{K} = (K, \oplus, \otimes, \boldsymbol{0}, \boldsymbol{1}).$

Definition ([Green et al., 2007])

A K-relation of arity *m* is a function $R : \text{Dom}^m \to K$ with "finite support": Supp $(R) \stackrel{\text{def}}{=} \{t \in \text{Dom}^m \mid R(t) \neq \mathbf{0}\}$ is finite.

<u>A B-relation:</u>		
Name	City	
Alice	SF	1
Alice	NYC	0
Bob	Seattle	1
Set semantics:		

2 tuples

А	ℕ-re	lation:	

City			
SF	5		
NYC	0		
Seattle	3		
Bag semantics:			
	City SF NYC Seattle antics:		

<u>An ℝ-rel</u>	ation:	
Name	City	
Alice	SF	-0.5
Alice	NYC	0.1
Bob	Seattle	3.4
A tensor		

Query Evaluation

A query Q with inputs R_1, R_2, \ldots returns some output $Q(R_1, R_2, \ldots)$.

What if R_1, R_2, \ldots are K-relations over some fixed semiring K?

We can define the output $Q(R_1, R_2, ...)$ when inputs are K-relation.

Basic principle: \land becomes \otimes and \lor becomes \oplus .

We will do it in two ways: for Positive Relational Algebra, and UCQs

Optimization Rules

Semantics Using Positive Relational Algebra

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

Their definition over K-relations is as follows:

 $(R \bowtie S)(t) \stackrel{\text{def}}{=} \text{what?}$

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\operatorname{Attr}(R)}(t)) \otimes S(\pi_{\operatorname{Attr}(S)}(t))$$

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\text{Attr}(R)}(t)) \otimes S(\pi_{\text{Attr}(S)}(t))$$
$$\sigma_{p}(R)(t) \stackrel{\text{def}}{=} \text{what?}$$

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\text{Attr}(R)}(t)) \otimes S(\pi_{\text{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

Optimization Rules

Semantics Using Positive Relational Algebra

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\text{Attr}(R)}(t)) \otimes S(\pi_{\text{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\Pi_X(R)(t) \stackrel{\text{def}}{=} \text{what?}$$

Optimization Rules

Semantics Using Positive Relational Algebra

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\text{Attr}(R)}(t)) \otimes S(\pi_{\text{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\Pi_X(R)(t) \stackrel{\text{def}}{=} \bigoplus_{t':\Pi_X(t')=t} R(t')$$

We consider only the positive RA: $\bowtie, \sigma, \Pi, \cup$.

$$(R \bowtie S)(t) \stackrel{\text{def}}{=} R(\pi_{\text{Attr}(R)}(t)) \otimes S(\pi_{\text{Attr}(S)}(t))$$

$$\sigma_p(R)(t) \stackrel{\text{def}}{=} \mathbf{1}_{p(t)} \otimes R(t) \qquad \text{where } \mathbf{1}_{p(t)} = \begin{cases} 1 & \text{if } p(t) \text{ is true} \\ \mathbf{0} & \text{otherwise} \end{cases}$$

$$\Pi_X(R)(t) \stackrel{\text{def}}{=} \bigoplus_{t':\Pi_X(t')=t} R(t')$$

$$(R \cup S)(t) \stackrel{\text{def}}{=} R(t) \oplus S(t)$$

K-Relaltions

Provenance Polynomials

Optimization Rules

Examples

K-Relaltions

Provenance Polynomials

Optimization Rules

Examples

 $\begin{array}{c|c} A & B \\ \hline a_1 & b_1 & x \\ a_2 & b_1 & y \\ a_2 & b_2 & z \end{array}$

Provenance Polynomials

Optimization Rules

Examples

 $\begin{array}{c|c} A & B \\ \hline a_1 & b_1 & b_1 \\ a_2 & b_1 & y_1 \\ a_2 & b_2 & z_2 \end{array}$

Provenance Polynomials

Optimization Rules

Examples

 $\begin{array}{c|c} A & B \\ \hline a_1 & b_1 & p_1 \\ a_2 & b_1 & p_2 \\ a_2 & b_2 & p_2 \end{array}$

В			D	6	1		A	В	С	
b_1	x	X	D 6	C		=	a_1	b_1	<i>c</i> ₁	xu
b_1	y		D1 6				a ₂	b_1	c_1	yu
b_2	z		<i>D</i> ₂	<i>c</i> ₂			<i>a</i> ₂	<i>b</i> ₂	<i>c</i> ₂	zv

Provenance Polynomials

Optimization Rules

A	E	3]	Γ	R			A	В	С]
a ₁	b	21	x	м	<i>b</i> .	~		a ₁	b_1	<i>c</i> ₁	xu
a ₂	b	21	y y		b_1	-1	u —	a ₂	b_1	c_1	yu
a ₂	b	2	z		02	-2	v	a ₂	<i>b</i> ₂	<i>c</i> ₂	zv
$\sigma_{A=1}$	a ₂		A a ₁ a ₂ a ₂ a ₃	$\begin{vmatrix} B \\ b_1 \\ b_1 \\ b_2 \\ b_1 \end{vmatrix}$	x y z u	=	A a ₁ a ₂ a ₂ a ₃	$B \\ b_1 \\ b_1 \\ b_2 \\ b_1$			

Provenance Polynomials

Optimization Rules

A	E	3]	Г	R			A	В	С]
a ₁	b	1	x	м	b ₁			a ₁	b_1	<i>c</i> ₁	xu
a ₂	b	1	y y		b_1	-1	u — v	a ₂	b_1	<i>c</i> ₁	yu
<i>a</i> ₂	b	2	z	L	02	-2	v	<i>a</i> ₂	<i>b</i> ₂	<i>c</i> ₂	zv
$\sigma_{A=1}$	a ₂		A a ₁ a ₂ a ₂ a ₃	$ \begin{array}{c c} B\\ b_1\\ b_1\\ b_2\\ b_1 \end{array} $	x y z u	=	A a1 a2 a2 a3	$B \\ b_1 \\ b_1 \\ b_2 \\ b_1$	$x \cdot 0$ $y \cdot 1$ $z \cdot 1$ $u \cdot 0$	 	

Provenance Polynomials

Optimization Rules

Provenance Polynomials

Optimization Rules

Provenance Polynomials

Optimization Rules

• Suppose the semiring is that of Booleans B. What does the positive relational algebra compute?

• Suppose the semiring is that of natural numbers N. What does the positive relational algebra compute?

• Suppose the semiring is that of Booleans B. What does the positive relational algebra compute? Standard set semantics

• Suppose the semiring is that of natural numbers N. What does the positive relational algebra compute?

• Suppose the semiring is that of Booleans B. What does the positive relational algebra compute? Standard set semantics

An *idempotent* semiring is one where $x \oplus x = x$

• Suppose the semiring is that of natural numbers N. What does the positive relational algebra compute?

• Suppose the semiring is that of Booleans B. What does the positive relational algebra compute? Standard set semantics

An *idempotent* semiring is one where $x \oplus x = x$

• Suppose the semiring is that of natural numbers N. What does the positive relational algebra compute? Bag semantics

Notice that $\ensuremath{\mathbb{N}}$ is not idempotent

Recall that a Conjunctive Query (CQ) is:

$$Q(\boldsymbol{X}) = \exists \boldsymbol{Y} \left(R_1(\boldsymbol{Z}_1) \land R_2(\boldsymbol{Z}_2) \land \cdots
ight)$$

Recall that a Conjunctive Query (CQ) is: $Q(\mathbf{X}) = \exists \mathbf{Y} (R_1(\mathbf{Z}_1) \land R_2(\mathbf{Z}_2) \land \cdots)$

Let $\mathbf{V} \stackrel{\text{def}}{=} \operatorname{Vars}(Q)$ (all variables).

If R_1, R_2, \ldots are K-relations, then the semantics of Q is defined as:

Recall that a Conjunctive Query (CQ) is: $Q(\mathbf{X}) = \exists \mathbf{Y} (R_1(\mathbf{Z}_1) \land R_2(\mathbf{Z}_2) \land \cdots)$

Let $\boldsymbol{V} \stackrel{\text{def}}{=} \operatorname{Vars}(Q)$ (all variables).

If R_1, R_2, \ldots are K-relations, then the semantics of Q is defined as:

$$Q(\mathbf{x}) \stackrel{\text{def}}{=} \bigoplus_{\mathbf{v} \in \mathsf{Dom}^{\mathbf{v}}: \pi_{\mathbf{X}}(\mathbf{v}) = \mathbf{x}} R_1(\pi_{\mathbf{Z}_1}(\mathbf{v})) \otimes R_2(\pi_{\mathbf{Z}_2}(\mathbf{v})) \otimes \cdots$$

Recall that a Conjunctive Query (CQ) is: $Q(\boldsymbol{X}) = \exists \boldsymbol{Y} (R_1(\boldsymbol{Z}_1) \land R_2(\boldsymbol{Z}_2) \land \cdots)$

Let $\boldsymbol{V} \stackrel{\text{def}}{=} \operatorname{Vars}(Q)$ (all variables).

If R_1, R_2, \ldots are K-relations, then the semantics of Q is defined as:

$$Q(\mathbf{x}) \stackrel{\text{def}}{=} \bigoplus_{\mathbf{v} \in \text{Dom}} \mathbf{v}_{:\pi_{\mathbf{X}}(\mathbf{v}) = \mathbf{x}} R_1(\pi_{\mathbf{Z}_1}(\mathbf{v})) \otimes R_2(\pi_{\mathbf{Z}_2}(\mathbf{v})) \otimes \cdots$$

The semantics of an UCQ

Semirings

Provenance Polynomials

Optimization Rules

Short Comment

The semantics over K-relations is simple!

Replace \lor , \land with \oplus , \otimes

Sparse Tensors

 $\ensuremath{\mathbb{R}}\xspace$ -relations are logically equivalent to sparse tensors.

Sparse Tensors

 \mathbb{R} -relations are logically equivalent to sparse tensors.

A sparse matrix: $M = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 0 & 7 \\ 1.1 & -5 & 0 \end{pmatrix}$

Representation as an \mathbb{R} -relation:

Χ	Y	
1	1	9
2	3	7
3	1	1.1
3	2	-5

Optimization Rules

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over $\mathbb R\text{-}relations.$

Optimization Rules

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over $\mathbb R\text{-}relations.$

CQ: $Q(X,Z) = \exists Y(A(X,Y) \land B(Y,Z))$

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over \mathbb{R} -relations.

CQ: $Q(X,Z) = \exists Y(A(X,Y) \land B(Y,Z))$

Einstein Summation: $Q[i, k] = \sum_{j} A[i, j] \cdot B[j, k]$

Provenance Polynomials

Optimization Rules

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

- Transpose: B[i,j] = A[i,j]
- Summation: S = A[i, j]
- Row sum: R[i] = A[i, j]
- Dot product: P = A[i] * B[i]
- Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Provenance Polynomials

Optimization Rules

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

- Transpose: B[i, j] = A[i, j]
- Summation: S = A[i, j]
- Row sum: R[i] = A[i, j]
- Dot product: P = A[i] * B[i]
- Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Provenance Polynomials

Optimization Rules

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i, j]

Dot product: P = A[i] * B[i]

Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

D		
Dan	<u>SU</u>	CIII
Dun	00	

Provenance Polynomials

Optimization Rules

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

Transpose: B[i,j] = A[i,j]

Summation: S = A[i, j]

Row sum: R[i] = A[i, j]

Dot product: P = A[i] * B[i]

Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Dan Suciu

Provenance Polynomials

Optimization Rules

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

- Transpose: B[i,j] = A[i,j]
- Summation: S = A[i, j]
- Row sum: R[i] = A[i, j]
- Dot product: P = A[i] * B[i]

Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Dan Suciu

Provenance Polynomials

Optimization Rules

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

- Transpose: B[i,j] = A[i,j]
- Summation: S = A[i, j]
- Row sum: R[i] = A[i, j]
- Dot product: P = A[i] * B[i]

Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Dan Suciu

Provenance Polynomials

Einsums¹

Einsums "drop the quantifiers": $Q(X, Z) = A(X, Y) \land B(Y, Z)$.

- Transpose: B[i,j] = A[i,j]
- Summation: S = A[i, j]
- Row sum: R[i] = A[i, j]
- Dot product: P = A[i] * B[i]
- Outer product T[i, j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m] = A[i, j, m] * B[j, k, m]

¹https://rockt.github.io/2018/04/30/einsum

Access Control

• Discretionary Access Control: read/write/etc permissions for each user/resource pair.

• Mandatory Access Control: clearance levels. Secret, Top Secret, etc.

Mandatory Access Control

The access control semiring: $(\mathbb{A}, \min, \max, 0, P)$

 $\mathbb{A} = \{ \mathsf{Public} < \mathsf{Confidential} < \mathsf{Secret} < \mathsf{Top}\mathsf{-}\mathsf{secret} < \mathsf{0} \} \mathsf{0}$ "No Such Thing"

Mandatory Access Control

The access control semiring: $(\mathbb{A}, \min, \max, 0, P)$

 $\mathbb{A} = \{ \mathsf{Public} < \mathsf{Confidential} < \mathsf{Secret} < \mathsf{Top}\mathsf{-}\mathsf{secret} < \mathsf{0} \} \ \mathsf{0} \ \text{``No Such Thing''}$

What are the annotations of the output tuples?

Mandatory Access Control

The access control semiring: $(\mathbb{A}, \min, \max, 0, P)$

 $\mathbb{A} = \{ \mathsf{Public} < \mathsf{Confidential} < \mathsf{Secret} < \mathsf{Top}\mathsf{-}\mathsf{secret} < \mathsf{0} \} \ \mathsf{0} \ \text{``No Such Thing''}$

What are the annotations of the output tuples?

Discussion

• K-Relations: powerful abstraction that allows us to apply concepts from the relational model to other domains

• Einsum notation popular in ML: numpy, TensorFlow, pytorch Note slight variation in syntax. (Read the manual!)

• The original motivation of K-relations in [Green et al., 2007] was to model *provenance*. Will discuss next.

Overview

Run a query over the input data. Look at one output tuple *t*.

Where does *t* come from?

Provenance, or lineage, aims to define some formalism to answer this question.

Many variants were proposed in the literature before K-relations, with an unclear winner.

K-relations proved to be able to capture them all, in an elegant framework.

Fix a standard database instance $\boldsymbol{D} = (R_1^D, R_2^D, \ldots)$.

Annotate each tuple with a distinct tag x_1, x_2, \ldots ; abstract tagging.

Consider the semiring of polynomials $\mathbb{N}[\mathbf{x}] = \mathbb{N}[x_1, x_2, \ldots]$

Each relation R_i^D becomes an $\mathbb{N}[\mathbf{x}]$ -relation.

Compute the query Q over the these $\mathbb{N}[\mathbf{x}]$ -relations.

Output tuples annotated with polynomials: provenance polynomials.
Provenance Polynomials

Optimization Rules

Example

From [Green et al., 2007]

Α	В	С	
а	b	С	x
d	b	е	y y
f	g	е	z

A	С	
а	С	
а	е	
d	с	
d	e	
f	е	

 $Q(A, C) = \\ \exists A_1 B_1 C_1(R(A, B_1, C_1) \land R(A_1, B_1, C)) \\ \lor \exists A_1 B_1 B_2(R(A, B_1, C) \land R(A_1, B_2, C))$

Provenance Polynomials

Optimization Rules

Example

From [Green et al., 2007]

A	В	С	
а	b	С	x
d	b	е	y y
f	g	е	z

A	С	
а	С	$2x^{2}$
а	е	xy
d	С	ху
d	е	$2y^{2} + yz$
f	е	$2z^{2} + yz$

Q(A, C) = $\exists A_1 B_1 C_1(R(A, B_1, C_1) \land R(A_1, B_1, C))$ $\lor \exists A_1 B_1 B_2(R(A, B_1, C) \land R(A_1, B_2, C))$

Provenance Polynomials

Optimization Rules

Example

From [Green et al., 2007]

A	В	С	
а	b	С	x
d	b	е	y
f	g	е	Z

 $Q(A, C) = \\ \exists A_1 B_1 C_1 (R(A, B_1, C_1) \land R(A_1, B_1, C)) \\ \lor \exists A_1 B_1 B_2 (R(A, B_1, C) \land R(A_1, B_2, C))$

$$\begin{array}{|c|c|c|c|c|}\hline A & C \\\hline a & c & 2x^2 \\\hline a & e & xy \\d & c & xy \\d & e & 2y^2 + yz \\f & e & 2z^2 + yz \\\hline \text{Interpretation:} \end{array}$$

• (a, e) is derived from x and y.

Provenance Polynomials

Optimization Rules

Example

From [Green et al., 2007]

A	В	С	
а	b	С	x
d	b	е	y
f	g	е	Z

 $Q(A, C) = \\ \exists A_1 B_1 C_1(R(A, B_1, C_1) \land R(A_1, B_1, C)) \\ \lor \exists A_1 B_1 B_2(R(A, B_1, C) \land R(A_1, B_2, C))$

	Α	C			
	а	С	$2x^{2}$		
	а	e	xy		
	d	с	ху		
	d	e	$2y^{2} + yz$		
	f	е	$2z^{2} + yz$		
ĺ	Interpretation:				

- (a, e) is derived from x and y.
- (*a*, *c*) is derived in two ways: using *x* twice, and using *x* twice.
- (*d*, *e*) is derived ...

Other Notions of Provenance

Many variations on the following themes:

Do we distinguish between conjunction and disjunction?
Do R ∪ R and R ∩ R have the same provenance?

Do we require idempotence?
Does R ∪ R have the same provenance as R ∪ R ∪ R?

Do we require multiplicative idempotence?
Does R ∩ R have the same provenance as R?

Provenance Polynomials

More informative

Less informative

Discussion

- Fine-grained provenance: complete information on how a tuple was produced.
 - Provenance polynomials are fine-grained
- Coarse-grained provenance: data science pipelines
 - ► What input files where used? What versions? When were they collected?
 - What tools were used in the pipeline? What version? What (hyper-)parameter settings?
 - ▶ When was the pipeline executed? On what OS, what configuration?

Optimization Rules

Optimization Rules

why?

Review: The Algebraic Laws of Relational Algebra

There is no finite axiomatization of the Relational Algebra

But there is a finite axiomatization of Positive Relational Algebra why? Examples:

$$(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$$
$$(R \cup S) \bowtie T = R \bowtie T \cup S \bowtie T$$
$$\sigma_p(R \bowtie S) = \sigma_p(R) \bowtie S$$

. . .

What are the Algebraic Laws over K-relations?

Dan Suciu

Homomorphisms

A homomorphism $f : (S, \oplus, \otimes, \mathbf{0}, \mathbf{1}) \to (K, +, \cdot, 0, 1)$ is a function $f : S \to K$ such that:

$$f(\mathbf{0}) = 0 \qquad f(\mathbf{1}) = 1$$

$$f(x \oplus y) = f(x) + f(y) \qquad f(x \otimes y) = f(x) \cdot f(y)$$

Provenance Polynomials

Universality Property

Theorem

Fix a set $\mathbf{x} = \{x_1, x_2, ...\}$. The semiring $(\mathbb{N}[\mathbf{x}], +, \cdot, 0, 1)$ is the freely generated commutative semiring.

D		
llan	<u></u>	
Dan	20	•

Applications to Query Optimization

Corollary

Consider an identity in semirings $E_1 = E_2$. The following are equivalent:

- $E_1 = E_2$ holds in $(\mathbb{N}, +, \cdot, 0, 1)$.
- **2** $E_1 = E_2$ holds in $(\mathbb{N}[x], +, \cdot, 0, 1)$.

• $E_1 = E_2$ holds in all commutative semirings.

Proof (in class) Item $1 \Rightarrow$ Item $2 \Rightarrow$ Item $3 \Rightarrow$ Item 1

Example:
$$(x + y)(x + z)(y + z) = xy(x + y) + xz(x + z) + yz(y + z) + 2xyz$$

Applications for Query Optimization

Consider an identity $E_1 = E_2$ in the Positive Relational Algebra $(\bowtie, \sigma, \Pi, \cup)$.

The following are equivalent:

- $E_1 = E_2$ holds under bag semantics.
- $E_1 = E_2$ holds for all K-relations, i.e. for any semiring K.

Example $R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$.

What about set semantics? Do we have more identities? Fewer identities? Give examples!

Discussion

• Semirings and K-relations significantly expand the scope of the relational data model to a rich set of applications.

• Cost-based query optimizers designed for SQL could, in theory, be deployed in several other domains. E.g. sparse tensor processing.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).

Provenance semirings.

In Libkin, L., editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China, pages 31–40. ACM.