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Outline

Today: Semirings, K-Relations; positive RA only.

Thursday: FO over Semirings (guest lecturer Val Tannen)
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Semirings K-Relaltions Provenance Polynomials Optimization Rules

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

Bag semantics: R(a, b) occurs 5 times; R(c , d) occurs 0 times.

Linear algebra: R[i , j ] = −0.5.

Security: R(a, b) is secret; R(c, d) is top secret.

Provenance: R(a, b) was obtained as follows . . . . . .

The algebraic concept for all these is a semiring.
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Monoids

Definition

A monoid is a tuple M = (M, ◦, 1), where:
◦ : M ×M → M is a binary function (operation).

1 ∈ M is an element.

◦ is associative: (x ◦ y) ◦ z = x ◦ (y ◦ z).
1 is a left and right identity: 1 ◦ x = x ◦ 1 = x .

The monoid is commutative if x ◦ y = y ◦ x .

The monoid is a group if ∀x ∈ M, ∃y ∈ M s.t. x ◦ y = y ◦ x = 1.
prove that y is unique Notation: y = x−1.
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Examples

Which ones are groups?
(R,+, 0)

(R, ∗, 1)

(Rn×n, ·, In): n × n matrices w/ multiplication

(Sn, ◦, idn) permutations of n elements w/ composition

(2Ω,∩,Ω)

(2Ω,∪, ∅)
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Semirings

Definition

A semiring is a tuple S = (S ,⊕,⊗, 0, 1) where:

(S ,⊕, 0) is a commutative monoid.

(S ,⊗, 1) is a monoid.

⊗ distributes over ⊕: x ⊗ (y ⊕ z) =(x ⊗ y)⊕ (x ⊗ z)

(y ⊕ z)⊗ x =(y ⊗ x)⊕ (z ⊗ x)

0 is absorbing, also called annihilating: x ⊗ 0 = 0⊗ x = 0

S is a commutative semiring if ⊗ is commutative.

A ring is a semiring where ∀x has an additive inverse −x .

A field is a commutative ring where ∀x ̸= 0 has a multiplicative inverse x−1.
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Examples

B = ({0, 1},∨,∧, 0, 1) Booleans

(R,+, ·, 0, 1)

(N,+, ·, 0, 1)

(Rn×n,+, ·, 0n×n, In) Matrices

T = ([0,∞],min,+,∞, 0)
Tropical Semiring

(2Ω,∪,∩, ∅,Ω)
Subsets of Ω

(R[x ],+, ·, 0, 1) Polynomials

F = ([0, 1],max,min, 0, 1)
“Fuzzy Logic” semiring
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Discussion

Semirings belong to Algebra, with monoids, groups, rings, fields.

Most semirings of interest to us are not rings, e.g. B or N.

We will only consider commutative semirings, x ⊗ y = y ⊗ x .

We often write +, · instead of ⊕,⊗

E.g. x2y + 3z means x ⊗ x ⊗ y ⊕ (1⊕ 1⊕ 1)⊗ z
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K-Relations
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Overview

A standard relation associates to each tuple a Boolean value: 0 or 1.

A K-relation associates to each tuple a value from a semiring K.

By choosing different semirings, we can support different applications.
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K-Relations

Fix an infinite domain Dom and a semiring K = (K ,⊕,⊗, 0, 1).

Definition ([Green et al., 2007])

A K-relation of arity m is a function R : Domm → K with “finite support”:

Supp(R)
def
= {t ∈ Domm | R(t) ̸= 0} is finite.

A B-relation:
Name City
Alice SF 1
Alice NYC 0
Bob Seattle 1

Set semantics:
2 tuples

A N-relation:
Name City
Alice SF 5
Alice NYC 0
Bob Seattle 3

Bag semantics:
8 tuples

An R-relation:
Name City
Alice SF -0.5
Alice NYC 0.1
Bob Seattle 3.4

A tensor
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Query Evaluation

A query Q with inputs R1,R2, . . . returns some output Q(R1,R2, . . .).

What if R1,R2, . . . are K -relations over some fixed semiring K?

We can define the output Q(R1,R2, . . .) when inputs are K-relation.

Basic principle: ∧ becomes ⊗ and ∨ becomes ⊕.

We will do it in two ways: for Positive Relational Algebra, and UCQs
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Semantics Using Positive Relational Algebra

We consider only the positive RA: ⋊⋉, σ,Π,∪.

Their definition over K-relations is as follows:

(R ⋊⋉ S)(t)
def
=R(πAttr(R)(t))⊗ S(πAttr(S)(t))

σp(R)(t)
def
=1p(t) ⊗ R(t) where 1p(t) =

{
1 if p(t) is true

0 otherwise

ΠX (R)(t)
def
=

⊕
t′:ΠX (t′)=t

R(t ′)

(R ∪ S)(t)
def
=R(t)⊕ S(t)
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Examples

A B
a1 b1 x
a2 b1 y
a2 b2 z

⋊⋉
B C
b1 c1 u
b2 c2 v

=

A B C
a1 b1 c1

xu

a2 b1 c1

yu

a2 b2 c2

zv

σA=a2


A B
a1 b1 x
a2 b1 y
a2 b2 z
a3 b1 u

 =

A B
a1 b1

x · 0

a2 b1

y · 1

a2 b2

z · 1

a3 b1

u · 0

ΠA


A B
a1 b1 x
a2 b1 y
a2 b2 z
a2 b3 u

 =
A
a1

x

a2

y + z + u
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Special Cases

Suppose the semiring is that of Booleans B. What does the positive
relational algebra compute?

Standard set semantics

An idempotent semiring is one where x ⊕ x = x

Suppose the semiring is that of natural numbers N. What does the
positive relational algebra compute?

Bag semantics

Notice that N is not idempotent
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Semantics Using UCQs

Recall that a Conjunctive Query (CQ) is:

Q(X ) = ∃Y (R1(Z1) ∧ R2(Z2) ∧ · · · )

Let V def
= Vars(Q) (all variables).

If R1,R2, . . . are K-relations, then the semantics of Q is defined as:

Q(x) def
=

⊕
v∈DomV :πX (v)=x R1(πZ1(v))⊗ R2(πZ2(v))⊗ · · ·

The semantics of an UCQ Q(X ) = Q1(X ) ∪ Q2(X ) ∪ · · ·

is: Q(t)
def
= Q1(t)⊕ Q2(t)⊕ · · ·
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Short Comment

The semantics over K-relations is simple!

Replace ∨,∧ with ⊕, ⊗
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Sparse Tensors

R-relations are logically equivalent to sparse tensors.

A sparse matrix:

M =

 9 0 0
0 0 7
1.1 −5 0


Representation as an R-relation:
X Y
1 1 9
2 3 7
3 1 1.1
3 2 −5
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Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over R-relations.

CQ:
Q(X ,Z ) = ∃Y (A(X ,Y ) ∧ B(Y ,Z ))

Einstein Summation:
Q[i , k] =

∑
j A[i , j ] · B[j , k]

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 20 / 38



Semirings K-Relaltions Provenance Polynomials Optimization Rules

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over R-relations.

CQ:
Q(X ,Z ) = ∃Y (A(X ,Y ) ∧ B(Y ,Z ))

Einstein Summation:
Q[i , k] =

∑
j A[i , j ] · B[j , k]

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 20 / 38



Semirings K-Relaltions Provenance Polynomials Optimization Rules

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over R-relations.

CQ:
Q(X ,Z ) = ∃Y (A(X ,Y ) ∧ B(Y ,Z ))

Einstein Summation:
Q[i , k] =

∑
j A[i , j ] · B[j , k]

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 20 / 38



Semirings K-Relaltions Provenance Polynomials Optimization Rules

Einsums1

Einsums “drop the quantifiers”: Q(X ,Z ) = A(X ,Y ) ∧ B(Y ,Z ).

Transpose: B[i , j ] = A[i , j ]

Summation: S = A[i , j ]

Row sum: R[i ] = A[i , j ]

Dot product: P = A[i ] ∗ B[i ]

Outer product T [i , j ] = A[i ] ∗ B[j ]

Batch matrix multiplication: C [i , k,m] = A[i , j ,m] ∗ B[j , k,m]

1https://rockt.github.io/2018/04/30/einsum
Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 21 / 38
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Access Control

Discretionary Access Control: read/write/etc permissions for each
user/resource pair.

Mandatory Access Control: clearance levels. Secret, Top Secret, etc.
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Mandatory Access Control

The access control semiring: (A,min,max, 0,P)

A = {Public < Confidential < Secret < Top-secret < 0} 0 “No Such Thing”

Pics
PID
p1 S
p2 T

Occ
PID DID
p1 d1 P
p2 d1 P
p2 d2 P

Docs
DID
d1 C
d2 0

Answer
PID
p1

S

p2

T

Q(p) = Pics(p) ∧ Occ(p, d) ∧ Docs(d)

What are the annotations of the output tuples?
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Discussion

K-Relations: powerful abstraction that allows us to apply concepts
from the relational model to other domains

Einsum notation popular in ML: numpy, TensorFlow, pytorch
Note slight variation in syntax. (Read the manual!)

The original motivation of K-relations in [Green et al., 2007] was to
model provenance. Will discuss next.
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Provenance Polynomials

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 25 / 38



Semirings K-Relaltions Provenance Polynomials Optimization Rules

Overview

Run a query over the input data. Look at one output tuple t.

Where does t come from?

Provenance, or lineage, aims to define some formalism to answer this
question.

Many variants were proposed in the literature before K-relations, with an
unclear winner.

K-relations proved to be able to capture them all, in an elegant framework.
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Provenance Polynomials

Fix a standard database instance D = (RD
1 ,RD

2 , . . .).

Annotate each tuple with a distinct tag x1, x2, . . .; abstract tagging.

Consider the semiring of polynomials N[x ] = N[x1, x2, . . .]

Each relation RD
i becomes an N[x ]-relation.

Compute the query Q over the these N[x ]-relations.

Output tuples annotated with polynomials: provenance polynomials.
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Example

From [Green et al., 2007]

A B C
a b c x
d b e y
f g e z

Q(A,C) =

∃A1B1C1(R(A,B1,C1) ∧ R(A1,B1,C))

∨∃A1B1B2(R(A,B1,C) ∧ R(A1,B2,C))

A C
a c

2x2

a e

xy

d c

xy

d e

2y2 + yz

f e

2z2 + yz
Interpretation:

(a, e) is derived from x and y .

(a, c) is derived in two ways: using x
twice, and using x twice.

(d , e) is derived . . .
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Other Notions of Provenance

Many variations on the following themes:

Do we distinguish between conjunction and disjunction?
Do R ∪ R and R ∩ R have the same provenance?

Do we require idempotence?
Does R ∪ R have the same provenance as R ∪ R ∪ R?

Do we require multiplicative idempotence?
Does R ∩ R have the same provenance as R?
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More informative

N[X ]
2x2y + xy + 5y2 + xz

B[X ]
x2y + xy + y2 + xz

↓coeff.

idemp.<
Trio(X )

3xy + 5y + xz

↓exp.

>

Sorp(X )
xy + y2 + xz

absorb<
Why(X )
xy + y + xz

↓coeff.

idemp.<

↓exp.

>

PosBool(X )
y + xz

absorb<

↓exp.
>

Which(X )
xyz

+ = ·

>

Less informative
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Discussion

Fine-grained provenance: complete information on how a tuple was
produced.

▶ Provenance polynomials are fine-grained

Coarse-grained provenance: data science pipelines

▶ What input files where used? What versions? When were they collected?

▶ What tools were used in the pipeline? What version? What
(hyper-)parameter settings?

▶ When was the pipeline executed? On what OS, what configuration?
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Optimization Rules
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Review: The Algebraic Laws of Relational Algebra

There is no finite axiomatization of the Relational Algebra why?

But there is a finite axiomatization of Positive Relational Algebra why?

Examples:

(R ⋊⋉ S) ⋊⋉ T =R ⋊⋉ (S ⋊⋉ T )

(R ∪ S) ⋊⋉ T =R ⋊⋉ T ∪ S ⋊⋉ T

σp(R ⋊⋉ S) =σp(R) ⋊⋉ S

. . .

What are the Algebraic Laws over K-relations?
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Homomorphisms

A homomorphism f : (S ,⊕,⊗, 0, 1) → (K ,+, ·, 0, 1) is a function
f : S → K such that:

f (0) =0 f (1) =1

f (x ⊕ y) =f (x) + f (y) f (x ⊗ y) =f (x) · f (y)
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Universality Property

Theorem

Fix a set x = {x1, x2, . . .}. The semiring (N[x ],+, ·, 0, 1) is the freely
generated commutative semiring.

X > N[X ]

K

∃!f ∗ (hom)

∨
∀f

>
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Applications to Query Optimization

Corollary

Consider an identity in semirings E1 = E2. The following are equivalent:

1 E1 = E2 holds in (N,+, ·, 0, 1).
2 E1 = E2 holds in (N[x ],+, ·, 0, 1).
3 E1 = E2 holds in all commutative semirings.

Proof (in class) Item 1 ⇒ Item 2 ⇒ Item 3 ⇒ Item 1

Example:
(x + y)(x + z)(y + z) = xy(x + y) + xz(x + z) + yz(y + z) + 2xyz
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Applications for Query Optimization

Consider an identity E1 = E2 in the Positive Relational Algebra (⋊⋉, σ,Π,∪).

The following are equivalent:

E1 = E2 holds under bag semantics.

E1 = E2 holds for all K-relations, i.e. for any semiring K.

Example R ⋊⋉ (S ∪ T ) = (R ⋊⋉ S) ∪ (R ⋊⋉ T ).

What about set semantics? Do we have more identities? Fewer identities?
Give examples!
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Discussion

Semirings and K-relations significantly expand the scope of the
relational data model to a rich set of applications.

Cost-based query optimizers designed for SQL could, in theory, be
deployed in several other domains. E.g. sparse tensor processing.
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