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Outline

o Today: Semirings, K-Relations; positive RA only.

@ Thursday: FO over Semirings (guest lecturer Val Tannen)
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Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.
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Many applications require a more nuanced value.

e Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.

@ Linear algebra: R[i,j] = —0.5.
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Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.

Many applications require a more nuanced value.

e Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
@ Linear algebra: R[i,j] = —0.5.
e Security: R(a, b) is secret; R(c,d) is top secret.

e Provenance: R(a, b) was obtained as follows
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Optimizatic

Motivation

Traditional relations: R(a, b) is either true, or false. Boolean.
Many applications require a more nuanced value.
e Bag semantics: R(a, b) occurs 5 times; R(c, d) occurs 0 times.
@ Linear algebra: R[i,j] = —0.5.
e Security: R(a, b) is secret; R(c,d) is top secret.
e Provenance: R(a, b) was obtained as follows

The algebraic concept for all these is a semiring.

Dan Suciu Topics in DB Theory: Unit 7
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Monoids

Definition
A monoid is a tuple M = (M, 0, 1), where:
@ 0: M x M — M is a binary function (operation).
1 € M is an element.

°
@ o is associative: (xoy)oz=xo0(yoz).
°

1 is a left and right identity: 1ox =xo01 = x.
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Monoids

Definition
A monoid is a tuple M = (M, 0, 1), where:
@ 0: M x M — M is a binary function (operation).
1 € M is an element.

°
@ o is associative: (xoy)oz=xo0(yoz).
°

1 is a left and right identity: 1ox =xo01 = x.

The monoid is commutative if xoy = y o x.
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Monoids

Definition

A monoid is a tuple M = (M, 0, 1), where:
@ 0: M x M — M is a binary function (operation).
e 1€ M is an element.
@ o is associative: (xoy)oz=xo0(yoz).

@ 1 is a left and right identity: 1ox =x01 = x.

The monoid is commutative if xoy = y o x.

The monoid is a group if Vx e M, dy e M st. xoy =yox=1.
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Monoids

Definition

A monoid is a tuple M = (M, 0, 1), where:
@ 0: M x M — M is a binary function (operation).
e 1€ M is an element.
@ o is associative: (xoy)oz=xo0(yoz).

@ 1 is a left and right identity: 1ox =x01 = x.

The monoid is commutative if xoy = y o x.

The monoid is a group if Vx e M, dy e M st. xoy =yox=1.
prove that y is unique Notation: y = x~1.
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Examples

Which ones are groups?
(R, +,0)

(R,*,1)

(R™*" . 1,): n x n matrices w/ multiplication

(Sp, 0, id,) permutations of n elements w/ composition
(2%,1,Q)

(2%,U,0)

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 6/38
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Semirings

Definition

A semiring is a tuple S = (S5, ®, ®,0,1) where:
e (5,®,0) is a commutative monoid.
e (S,®,1) is a monoid.

e ® distributes over @: xRy o0z)=(x0y)® (x® z)

yoz)ex=(y®x)o(z20x)
@ 0 is absorbing, also called annihilating: x®@0=0® x =0
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Semirings

Definition

A semiring is a tuple S = (S5, ®, ®,0,1) where:
e (5,®,0) is a commutative monoid.
e (S,®,1) is a monoid.

e ® distributes over @: xRy o0z)=(x0y)® (x® z)

yoz)ex=(y®x)o(z20x)
@ 0 is absorbing, also called annihilating: x®@0=0® x =0

S is a commutative semiring if ® is commutative.
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Semirings

Definition

A semiring is a tuple S = (S5, ®, ®,0,1) where:
e (5,®,0) is a commutative monoid.
e (S,®,1) is a monoid.

e ® distributes over @: xRy o0z)=(x0y)® (x® z)

yoz)ex=(y®x)o(z20x)
@ 0 is absorbing, also called annihilating: x®@0=0® x =0

S is a commutative semiring if ® is commutative.
A ring is a semiring where Vx has an additive inverse —x.

A field is a commutative ring where Vx # 0 has a multiplicative inverse x 1.
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Examples
T = ([0, o], min, +, 00, 0)
B = ({0,1},V,A,0,1) Booleans Tropical Semiring
Q
(R, +,-,0,1) 2 .0.0.0.9)

Subsets of Q

(N, +,-,0,1) (R[x],+,,0,1) Polynomials

nxn . 1
(R 7+7 70n><n7 In) Matrices F = ([07 ]_]7 max, min, 0, 1)

“Fuzzy Logic” semiring

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 8/38
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Discussion

@ Semirings belong to Algebra, with monoids, groups, rings, fields.

@ Most semirings of interest to us are not rings, e.g. B or N.

@ We will only consider commutative semirings, x @ y = y ® x.

@ We often write +, - instead of ®,®

Eg x’y+3zmeans x@x@yo(1®olol)®z

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 9/38



K-Relaltions
©00000000000000

K-Relations

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 10/38



K-Relaltions Pr

enance Polynomials

0O@0000000000000

Overview

A standard relation associates to each tuple a Boolean value: 0 or 1.

A K-relation associates to each tuple a value from a semiring K.

By choosing different semirings, we can support different applications.

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 11/38
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K-Relations

Fix an infinite domain Dom and a semiring K = (K, ®,®,0,1).
Definition ([Green et al., 2007])

A K-relation of arity m is a function R : Dom™ — K with “finite support”:
supp(R) & {t € Dom™ | R(t) # 0} is finite.

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 12/38
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K-Relations

Fix an infinite domain Dom and a semiring K = (K, ®,®,0,1).

Definition ([Green et al., 2007])

A K-relation of arity m is a function R : Dom™ — K with “finite support”:

supp(R) & {t € Dom™ | R(t) # 0} is finite.

A B-relation:
Name | City
Alice | SF 1
Alice | NYC 0
Bob Seattle | 1

Set semantics:

2 tuples

Fall 2023
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K-Relations

Fix an infinite domain Dom and a semiring K = (K, ®,®,0,1).
Definition ([Green et al., 2007])

A K-relation of arity m is a function R : Dom™ — K with “finite support”:

supp(R) & {t € Dom™ | R(t) # 0} is finite.

A B-relation: A N-relation:
Name | City Name | City
Alice | SF 1 Alice | SF 5
Alice | NYC 0 Alice | NYC 0
Bob Seattle | 1 Bob Seattle | 3

Set semantics: Bag semantics:

2 tuples 8 tuples

Fall 2023
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K-Relations

Fix an infinite domain Dom and a semiring K = (K, ®,®,0,1).
Definition ([Green et al., 2007])

A K-relation of arity m is a function R : Dom™ — K with “finite support”:
supp(R) & {t € Dom™ | R(t) # 0} is finite.

A B-relation: A N-relation: An R-relation:
Name | City Name | City Name | City
Alice | SF 1 Alice | SF 5 Alice | SF -0.5
Alice | NYC 0 Alice | NYC 0 Alice | NYC 0.1
Bob Seattle | 1 Bob Seattle | 3 Bob Seattle | 3.4
Set semantics: Bag semantics: A tensor
2 tuples 8 tuples

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 12/38
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Query Evaluation

A query Q with inputs Ry, Ra, ... returns some output Q(Ry, R2,...).

What if Ry, Ry, ... are K-relations over some fixed semiring K?
We can define the output Q(Ri, R2,...) when inputs are K-relation.
Basic principle: A becomes ® and V becomes &.

We will do it in two ways: for Positive Relational Algebra, and UCQs

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023
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Semantics Using Positive Relational Algebra

We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 14 /38
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Their definition over K-relations is as follows:

(R S)(t) Ewhat?
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Semantics Using Positive Relational Algebra

We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

(R % S)(t) CR(arer(r) (1) @ S(Taur(s) (1))
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Semantics Using Positive Relational Algebra

We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

(R % S)(t) CR(arer(r) (1) @ S(Taur(s) (1))

oo(R)(t) Ewhat?
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Semantics Using Positive Relational Algebra

We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

(R % S)(t) CR(arer(r) (1) @ S(Taur(s) (1))

ef 1 if p(t) is true
UP(R)(t) d:]-p(t) & R(t) where lp(t) = { ( )

0 otherwise
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Semantics Using Positive Relational Algebra
We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

(R % S)(t) CR(arer(r) (1) @ S(Taur(s) (1))

def 1 if p(t) is true
ap(R)(t) =1y @ R(t) where 1) = {0 othin?vise

Mx(R)(t) Ewhat?
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Semantics Using Positive Relational Algebra
We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

(R % S)(t) CR(arer(r) (1) @ S(Taur(s) (1))

def 1 if p(t) is true
R)(t —1 Q R(t where 1 =
7p(R)(®) P(t) (t) P(t) {0 otherwise
Mx @ R(t')
t/:Mx(t')=t

Fall 2023 14/38
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Semantics Using Positive Relational Algebra

We consider only the positive RA: x, o, 1, U.

Their definition over K-relations is as follows:

(R X S)(t) d:efR(’/TAttr(R)(t)) ® S(ﬂ-Attr(S)(t))
7p(R)(t) =1 p(t) © R(t) where 1,4 = {1 if p(t) is true

0 otherwise
Mx @ R(t')

t/:Mx(t')=t

(RUS)(t) E'R(t) ® S(t)

Dan Suciu Topics in DB Theory: Unit 7
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Examples

AlS B|C

dai b1 X

a0 b1 y X b]_ Cl|u =
an b2 V4 b2 Qv
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Examples
Al B BETC A|lB|C
a1 | b1 | x aip | b1 | a
X b]_ Cl|u =
a | b1|y by | ¢ | v a | b |a
ar b2 V4 2 an b2 ()]
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Examples
A| B BT C Al B|C
ar | b | x a1 | b1 | a1 | xu
X b]_ Cl|u =
a | b1|y by | ¢ | v a | b |a
ar b2 V4 2 an b2 o
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Examples

A| B BT C Al B|C

ar | b | x a1 | b1 | a1 | xu
X b]_ Cl|u =

a | b1|y by | ¢ | v a | bi|a|yu

ar b2 V4 2 an b2 Cy | ZV
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Examples
Al|B
dai b1 X B ¢
X b]_ C1
ap bl y b2 c
an b2 V4 2
A|B
al b1 X
O-A:az 32 b]. y
an b2 z
as b1 u

Al B|C
g o= b1 | a
y a | b |a
an b2 o
A| B
a1 | b
a> | b
a | b
az | b

Polynomials

xu

yu
zv
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Polynomials

Examples
Al B
dai b1 X N ¢
X b]_ C1
a | by by | ¢
an b2 V4 2
Al B
al b1 X
Op=a, || 32| b1 |y
an b2 z
as b1 u

Dan Suciu Topics in DB Theory: Unit 7

Al B|C
g | b | a
a | bh|a
v
a | bh|ao
Al B
dal b1 x-0
ay | b y: 1
an b2 z-1
as b1 u-0

xu

yu
zv
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Examples
Al B Al B|C
dl b1 X B ¢ al b1 C1 | Xu
X b]_ Cl|u =
a | by by | ¢ | v ax | by |c|yu
ar b2 V4 2 an b2 Cy | ZV
A| B Al B
ar | b | x ai| b | x-0
Op=ay || @2 | b1 |y | =|a2|b1|y-1
a | b |z a | b|z-1
a | bju a3 | by |u-0
Al B
al b1 X A
Nalla | by [ =]|a
ar b2 V4 an
an b3 u
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Polynomials

Examples
Al B BT C Al B|C
ar | b | x ai | b1 | a
X b]_ Cl|u =
a | b |y by | e | v a | b | a
a | b |z a | b | o
Al B Al B
dai b1 X dai b1 x-0
Op=ay || @2 | b1 |y | =|a2|b1|y-1
an b2 z an b2 z-1
as b1 u as b1 u-0
Al B
al b1 X A
Nalla | by | =]|a X
an b2 z an
an b3 u

xu

yu
zv
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Examples
Al B AlB|C
dai b1 X B ¢ al b1 C1 | Xu
X b]_ Cl|u =
a |bi|y by | ¢ | v a | b|c|yu
an b2 z an b2 C | zv
Al B Al B
al b1 X dai b1 x-0
Op=ay || @2 | b1 |y [=|a|bi|y-1
an b2 z an b2 z-1
as b1 u as b1 u-0
Al B
al b1 X A
Nafla|b|y | =|a X
a | b |z a»|ly+tz+u
an b3 u
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Special Cases

@ Suppose the semiring is that of Booleans B. What does the positive
relational algebra compute?

@ Suppose the semiring is that of natural numbers N. What does the
positive relational algebra compute?

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 16 /38
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Special Cases

@ Suppose the semiring is that of Booleans B. What does the positive
relational algebra compute? Standard set semantics

@ Suppose the semiring is that of natural numbers N. What does the
positive relational algebra compute?
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Special Cases

@ Suppose the semiring is that of Booleans B. What does the positive
relational algebra compute? Standard set semantics

An idempotent semiring is one where x & x = x

@ Suppose the semiring is that of natural numbers N. What does the
positive relational algebra compute?
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Special Cases

@ Suppose the semiring is that of Booleans B. What does the positive
relational algebra compute? Standard set semantics

An idempotent semiring is one where x & x = x

@ Suppose the semiring is that of natural numbers N. What does the
positive relational algebra compute? Bag semantics

Notice that N is not idempotent

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 16 /38
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Semantics Using UCQs

Recall that a Conjunctive Query (CQ) is:
Q(X) =3Y (R]_(Z]_) A R2(22) A - )
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Semantics Using UCQs

Recall that a Conjunctive Query (CQ) is:
Q(X) =3Y (R]_(Z]_) A R2(22) A - )

Let V & Vars(Q) (all variables).

If Ri, Ry, ... are K-relations, then the semantics of Q is defined as:
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Semantics Using UCQs

Recall that a Conjunctive Query (CQ) is:
Q(X) =3Y (R]_(Z]_) A R2(22) A - )

Let V & Vars(Q) (all variables).

If Ri, Ry, ... are K-relations, then the semantics of Q is defined as:

Q%) E By cpomVing(v)ox RLUTZ (V) © Ra(72,(v)) ® - -
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Semantics Using UCQs

Recall that a Conjunctive Query (CQ) is:
Q(X) =3Y (R]_(Zl) A R2(22) A - )

Let V & Vars(Q) (all variables).

If Ri, Ry, ... are K-relations, then the semantics of Q is defined as:

Q%) E By cpomVing(v)ox RLUTZ (V) © Ra(72,(v)) ® - -

The semantics of an UCQ RIX)=Q1(X)UQX)U---
is: | Q) L Qu(t) & Qu(t) & - -

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 17 /38
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Short Comment

The semantics over K-relations is simple!

Replace V, A with &, ®

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 18/38
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Sparse Tensors

R-relations are logically equivalent to sparse tensors.

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 19/38
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Sparse Tensors

R-relations are logically equivalent to sparse tensors.

Representation as an R-relation:

A sparse matrix: XY
9 0 O 11119
M=|10 0 7 2137
1.1 -5 0 31111
31215

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 19/38



K-Relaltions
000000000080000

Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over R-relations.

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 20/38
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Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over R-relations.

CQ:
Q(X,2) =3Y(AX,Y) AB(Y,2))]
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Einstein Summations and CQs

An Einstein summation is the same as a CQ interpreted over R-relations.

CQ: Einstein Summation:
Q(X,2) =3Y(AX,Y)AB(Y,2))| |Qli.Kl=3;Ali.jl- Bl

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 20/38
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Einsums!

Einsums “drop the quantifiers”: Q(X,Z) = A(X,Y)AB(Y, Z2).

"https://rockt.github.i0/2018/04/30/einsum
BT Y
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Einsums!

Einsums “drop the quantifiers”: Q(X,Z) = A(X,Y)AB(Y, Z2).

Transpose: Bli,j] = Ali,]]

"https://rockt.github.i0/2018/04/30/einsum
BT Y


https://rockt.github.io/2018/04/30/einsum
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Einsums!

Einsums “drop the quantifiers”:

Transpose: Bli,j] = Ali,]]

Summation: S = A[i, ]

ce Polynomials

Q(X,Z) = A(X,Y) AB(Y, 2).

"https://rockt.github.i0/2018/04/30/einsum
T

tion Rules
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Einsums!

Einsums “drop the quantifiers”:

Transpose: Bli,j] = Ali,]]
Summation: S = A[i,]]

Row sum: R[i] = A[i,]]

Q(X,Z) = A(X,Y) AB(Y, 2).

"https://rockt.github.i0/2018/04/30/einsum
T
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ce Polynomials

Einsums!

Einsums “drop the quantifiers”: Q(X,Z) = A(X,Y)A B(Y,2).
Transpose: B[i,j] = Ali, ]

Summation: S = A[i, J]

Row sum: R[i] = A[i, /]

Dot product: P = Ali] * BJi]

"https://rockt.github.i0/2018/04/30/einsum

Dan Suciu Topics in DB Theory: Unit 7 Fall 2023 21/38
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ce Polynomials

Einsums!

Einsums “drop the quantifiers”: Q(X,Z) = A(X,Y)A B(Y,2).
Transpose: B[i,j] = Ali, ]

Summation: S = A[i, j]

Row sum: R[i] = A[i, /]

Dot product: P = A[i] * BJ[i]

Outer product T[i, ] = A[i] * B[j]

"https://rockt.github.i0/2018/04/30/einsum
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K-Relaltions ) ce Polynomials

00000000000 e000

Einsums!

Optimization

Einsums “drop the quantifiers”: Q(X,Z) = A(X,Y)AB(Y, Z2).

Transpose: B[i,j] = Ali, ]
Summation: S = A[i, j]

Row sum: R[i] = A[i, /]

Dot product: P = A[i] * BJ[i]
Outer product T[i,j] = A[i] * B[j]

Batch matrix multiplication: C[i, k, m| = A[i,j, m] * B[}, k, m]

"https://rockt.github.i0/2018/04/30/einsum
T
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Access Control

@ Discretionary Access Control: read/write/etc permissions for each
user/resource pair.

@ Mandatory Access Control: clearance levels. Secret, Top Secret, etc.
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Semirings

Mandatory Access Control

The access control semiring:

000000000000 0e0

(A, min, max, 0, P)

A = {Public < Confidential < Secret < Top-secret < 0} 0 “No Such Thing"

Pics

PID

pl
p2

Dan Suciu Topics in DB Theory: Unit 7

Occ

PID | DID
pl d1
p2 dl
p2 | d2

P
P
P

Docs

DID

dl
d2

Q(p) = Pics(p) A Oce(p, d) A Docs(d)
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Semirings

Mandatory Access Control
The access control semiring:

A = {Public < Confidential < Secret < Top-secret < 0} 0 “No Such Thing"

Pics

PID

pl
p2

K-Relaltions

000000000000 0e0

(A, min, max, 0, P)

Occ

PID | DID
pl d1
p2 dl
p2 | d2

P
P
P

Docs

DID

Answer

dl
d2

PID

pl
p2

Q(p) = Pics(p) A Oce(p, d) A Docs(d)

What are the annotations of the output tuples?
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K-Relaltions

Semirings

Mandatory Access Control

The access control semiring:

000000000000 0e0

(A, min, max, 0, P)

A = {Public < Confidential < Secret < Top-secret < 0} 0 “No Such Thing"

Pics

PID

pl
p2

Occ

PID | DID
pl d1
p2 dl
p2 | d2

P
P
P

Docs

DID

dl
d2

Answer
PID

pl | S
p2 | T

Q(p) = Pics(p) A Oce(p, d) A Docs(d)

What are the annotations of the output tuples?

Dan Suciu Topics in DB Theory: Unit 7

Fall 2023
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Discussion

@ K-Relations: powerful abstraction that allows us to apply concepts
from the relational model to other domains

@ Einsum notation popular in ML: numpy, TensorFlow, pytorch
Note slight variation in syntax. (Read the manual!)

@ The original motivation of K-relations in [Green et al., 2007] was to
model provenance. Will discuss next.
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Provenance Polynomials
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Overview

Run a query over the input data. Look at one output tuple t.

Where does t come from?

Provenance, or lineage, aims to define some formalism to answer this
question.

Many variants were proposed in the literature before K-relations, with an
unclear winner.

K-relations proved to be able to capture them all, in an elegant framework.
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Provenance Polynomials
[e]e] lele]e]e]

Provenance Polynomials

Fix a standard database instance D = (RP,RD,...).

Annotate each tuple with a distinct tag x1, xo, . . .; abstract tagging.
Consider the semiring of polynomials N[x] = N[xy, x2, . . ]

Each relation RP becomes an N[x]-relation.

Compute the query Q over the these N[x]-relations.

Output tuples annotated with polynomials: provenance polynomials.
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Example

From [Green et al., 2007]

Al C

alc

Al B|C ale

alb|c|x d| c

d|bl|ely d| e

flglelz fle
Q(A,C) =

E|A131C1(R(A, By, C1) A R(A17 By, C))
\/HAlBlB2(R(A, B, C) A R(A17 B>, C))

Dan Suciu Topics in DB Theory: Unit 7
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Provenance Polynomials Optimizatio

[e]e]e] le]ele)

Example

From [Green et al., 2007]

Al C
alc 2x?
Al B|C ale Xy
alb|c|x d| c Xy
d|blel|y d|e|2y?>+yz
flglelz flel|222+yz
Q(A, C) =

E|A131C1(R(A, By, C1) A R(A17 By, C))
\/HAlBlB2(R(A, B, C) A R(A17 B>, C))
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Example

From [Green et al., 2007]

AlC

alc 2x2
Al B|C ale Xy
alb|c|x d| c Xy
d|blely d| e 2y2+yz
flgle|z flel|22%2+yz

Interpretation:
Q(A,C) =

o (a,e) is derived from x and y.
E|A131C1(R(A, By, C1) A R(A17 By, C))

\/HAlBlB2(R(A, B, C) A R(A17 B>, C))
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Example

From [Green et al., 2007]

AlC
alc 2x?
Al B|C ale Xy
al|lb|c|x d| c Xy
d|blely d|e|2y?>+yz
flglelz flel|222+yz
Interpretation:
QA €)= o (a,e) is derived from x and y.
3A1B1Ci(R(A, B, Ci) A R(A1, B, €)) . o _
V3AB1By(R(A, B1, C) A R(AL By, C)) @ (@ €) is derived in two ways: using x

twice, and using x twice.
e (d,e) is derived ...
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Other Notions of Provenance

Many variations on the following themes:

@ Do we distinguish between conjunction and disjunction?
Do RU R and RN R have the same provenance?

e Do we require idempotence?
Does RU R have the same provenance as RUR U R?

@ Do we require multiplicative idempotence?
Does RN R have the same provenance as R?
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More informative

N[X]

2x%y + xy 4+ 5y? + xz
Jcoeff. Jexp.

\
/

B[X] idemp. Trio(X)

2 2
Xy +xy+y°+xz Lexp. Jcoeff. 3xy + 5y + xz

\
\

Why(X) idemp.
Xy +y+xz

Sorp ( X) absorb

Xy + y2 + xz Jex

\
%

Y

osBool(X) %P Which(X)

y+xz xyz

Less informative
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Discussion

@ Fine-grained provenance: complete information on how a tuple was
produced.
» Provenance polynomials are fine-grained

o Coarse-grained provenance: data science pipelines

» What input files where used? What versions? When were they collected?

» What tools were used in the pipeline? What version? What
(hyper-)parameter settings?

» When was the pipeline executed? On what OS, what configuration?
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Optimization Rules
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Review: The Algebraic Laws of Relational Algebra

There is no finite axiomatization of the Relational Algebra why?

But there is a finite axiomatization of Positive Relational Algebra why?

Examples:

(RXxS)x T=Rx(SxT)
(RUS)Xx T=Rx TUSX T
op(R X S)=0p(R) ™ S

What are the Algebraic Laws over K-relations?

Dan Suciu Topics in DB Theory: Unit 7
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Homomorphisms

A homomorphism f : (S,®,®,0,1) — (K,+,+,0,1) is a function
f S — K such that:

f(0) =0 f(1) =1
f(x@y) =f(x)+f(y) fx®y)=f(x) f(y)
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Universality Property

Theorem

Fix a set x = {x1,x2,...}. The semiring (N[x],+,-,0,1) is the freely
generated commutative semiring.

X — > N[X]
vF i
31f* (hom)
K
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Applications to Query Optimization

Corollary

Consider an identity in semirings E; = E>. The following are equivalent:
Q E; = E; holds in (N, +,-,0,1).
@ E; = E; holds in (N[x],+,-,0,1).

© E1 = E, holds in all commutative semirings.

Proof (in class) Item 1 = Item 2 = Item 3 = Item 1

Example:
(x+y)(x+2)(y + 2) = xy(x + y) + xz(x + 2) + yz(y + z) + 2xyz
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Applications for Query Optimization
Consider an identity E; = E; in the Positive Relational Algebra (X, o, 1, U).

The following are equivalent:

@ E; = E, holds under bag semantics.
o E; = E;, holds for all K-relations, i.e. for any semiring K.
Example R x (SUT)=(Rx S)U(Rx T).

What about set semantics? Do we have more identities? Fewer identities?
Give examples!
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Discussion

@ Semirings and K-relations significantly expand the scope of the
relational data model to a rich set of applications.

o Cost-based query optimizers designed for SQL could, in theory, be
deployed in several other domains. E.g. sparse tensor processing.
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@ Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.

In Libkin, L., editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 11-13, 2007, Beijing, China, pages 31-40. ACM

Fall 2023 38/38



	Semirings
	K-Relaltions
	Provenance Polynomials
	Optimization Rules

