CS294-248 Special Topics in Database Theory Unit 9: Datalog

Dan Suciu
University of Washington

Announcement

- Project presentations: Thursday, Nov. 30th, 9:30am, Calvin 146
- By Monday: please add your tentative topic here: https://tinyurl.com/43mdvwzy
- You can change the topic later, as you wish.

Outline

- Today: Basic Datalog
- Thursday: Extensions with Negation

Review

Motivation

- FO and its fragments cannot express simple, "easy" queries:
- Transitive closure
- Parity ("Is $|R|$ even?")
- Datalog: extends CQs with recursion

Datalog Syntax

- A program $P=$ set of rules.
- A rule is a CQ: $H:-A_{1} \wedge A_{2} \wedge \cdots$
- Extensional Database Predicates

$$
\begin{aligned}
& T(X, Y):-E(X, Y) \\
& T(X, Y):-T(X, Z) \wedge E(Z, X)
\end{aligned}
$$ EDBs

- Intensional Database Predicates IDBs

Pre-, Post-, and Fixpoints

Poset (partially ordered set) (P, \leq).
We assume P has a minimal element \perp.
$f: P \rightarrow P$ is monotone if $x \leq y \Rightarrow f(x) \leq f(y)$.
x is a pre-fixpoint if $f(x) \leq x$
x is a post-fixpoint if $f(x) \geq x$
x is a fixpoint if $f(x)=x$;

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints:
Post-fixpoints:
Fixpoints:

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints:
Fixpoints:

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints:

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: 1,2,3,6,7,8,9
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: 1,2,3,6,7,8,9
Post-fixpoints: 0,1,4,5,6,7
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: 1,2,3,6,7,8,9
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.
Theorem
If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.
Theorem
If the least pre-fixpoint exits then the least fixpoint exists and they are equal.
Proof: $z \stackrel{\text { def }}{=}$ least pre-fixpoint.

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.
Theorem
If the least pre-fixpoint exits then the least fixpoint exists and they are equal.
Proof: $z \stackrel{\text { def }}{=}$ least pre-fixpoint.
$f(z) \leq z$

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.
Theorem
If the least pre-fixpoint exits then the least fixpoint exists and they are equal.
Proof: $z \stackrel{\text { def }}{=}$ least pre-fixpoint.
$f(z) \leq z \quad f(f(z)) \leq f(z)$

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.
Theorem
If the least pre-fixpoint exits then the least fixpoint exists and they are equal.
Proof: $z \stackrel{\text { def }}{=}$ least pre-fixpoint.
$f(z) \leq z \quad f(f(z)) \leq f(z) \quad f(z)$ pre-fixpoint

Pre-, Post-, and Fixpoints

What are the pre-, post-, fixpoints?
Pre-fixpoints: $1,2,3,6,7,8,9$
Post-fixpoints: $0,1,4,5,6,7$
Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?
No: $f:(\mathbb{N}, \leq) \rightarrow(\mathbb{N}, \leq), f(x)=x+1$.
Theorem
If the least pre-fixpoint exits then the least fixpoint exists and they are equal.
Proof: $z \stackrel{\text { def }}{=}$ least pre-fixpoint.
$f(z) \leq z \quad f(f(z)) \leq f(z) \quad f(z)$ pre-fixpoint $\quad f(z)=z$

Kleene's Sequence

$$
f^{(0)} \stackrel{\text { def }}{=} \perp \quad f^{(t+1)} \stackrel{\text { def }}{=} f\left(f^{(t)}\right) \quad f^{(0)} \leq f^{(1)} \leq f^{(2)} \leq \cdots
$$

Fact

If z is any pre-fixpoint, then $f^{(t)} \leq z$ for all t.
Proof by induction: $\perp \leq z$ and $f^{(t+1)}=f\left(f^{(t)}\right) \leq f(z) \leq z$.

Kleene's Sequence

$$
f^{(0)} \stackrel{\text { def }}{=} \perp \quad f^{(t+1)} \stackrel{\text { def }}{=} f\left(f^{(t)}\right) \quad f^{(0)} \leq f^{(1)} \leq f^{(2)} \leq \cdots
$$

Fact

If z is any pre-fixpoint, then $f^{(t)} \leq z$ for all t.
Proof by induction: $\perp \leq z$ and $f^{(t+1)}=f\left(f^{(t)}\right) \leq f(z) \leq z$.
Is $\bigvee_{t \geq 0} f^{(t)}$ the least fixpoint?

Kleene's Sequence

$$
f^{(0)} \stackrel{\text { def }}{=} \perp \quad f^{(t+1)} \stackrel{\text { def }}{=} f\left(f^{(t)}\right) \quad f^{(0)} \leq f^{(1)} \leq f^{(2)} \leq \cdots
$$

Fact

If z is any pre-fixpoint, then $f^{(t)} \leq z$ for all t.
Proof by induction: $\perp \leq z$ and $f^{(t+1)}=f\left(f^{(t)}\right) \leq f(z) \leq z$.
Is $\bigvee_{t \geq 0} f^{(t)}$ the least fixpoint?
Not always. Two problems:

- $\bigvee_{t \geq 0} f^{(t)}$ may not exists.
- Even if it exists, we may have $f\left(\bigvee_{t \geq 0} f^{(t)}\right) \neq \bigvee_{t \geq 0} f^{(t)}$.

We will circumvent by requiring finite rank

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

- What is the rank of $(\{0,1\}, \leq)$?

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

- What is the rank of $(\{0,1\}, \leq)$?

$$
r=1
$$

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

- What is the rank of $(\{0,1\}, \leq)$?
$r=1$.
- What is the rank of $(\mathcal{P}(A), \subseteq)$?

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

- What is the rank of $(\{0,1\}, \leq)$?
$r=1$.
- What is the rank of $(\mathcal{P}(A), \subseteq)$?

$$
r=|A| .
$$

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

- What is the rank of $(\{0,1\}, \leq)$?
$r=1$.
- What is the rank of $(\mathcal{P}(A), \subseteq)$?
$r=|A|$.
- What is the rank of $\left(P_{1}, \leq_{1}\right) \times\left(P_{2}, \leq_{2}\right)$?

The Rank of a Poset

[Stanley, 1999]
A chain of rank r is a sequence $x_{0}<x_{1}<\cdots<x_{r}$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞.

- What is the rank of $(\{0,1\}, \leq)$?
$r=1$.
- What is the rank of $(\mathcal{P}(A), \subseteq)$?
$r=|A|$.
- What is the rank of $\left(P_{1}, \leq_{1}\right) \times\left(P_{2}, \leq_{2}\right)$?

$$
r=r\left(P_{1}\right)+r\left(P_{2}\right)
$$

Fixpoints in Posets of Finite Ranks

$$
f^{(0)} \stackrel{\text { def }}{=} \perp \quad f^{(t+1)} \stackrel{\text { def }}{=} f\left(f^{(t)}\right) \quad f^{(0)}<f^{(1)}<f^{(2)}<\cdots \leq f^{(r)}=f^{(r+1)}
$$

Theorem
If P has finite rank r then $\operatorname{lfp}(f)=f^{(r)}$.

Least Fixpoint Semantics of a Datalog Program P

$I=$ an EDB instance, $A \xlongequal{\text { def }} \mathrm{ADom}(I)$.
If R has arity k, then an instance is $R \in \mathcal{P}\left(A^{k}\right)$.

Least Fixpoint Semantics of a Datalog Program P

$I=$ an EDB instance, $A \xlongequal{\text { def }} \mathrm{ADom}(I)$.
If R has arity k, then an instance is $R \in \mathcal{P}\left(A^{k}\right)$.
If IDB predicates have arities k_{1}, k_{2}, \ldots then an IDB instance is $J \in \mathcal{P}\left(A^{k_{1}}\right) \times \mathcal{P}\left(A^{k_{2}}\right) \times \cdots$

Least Fixpoint Semantics of a Datalog Program P

$I=$ an EDB instance, $A \stackrel{\text { def }}{=} \operatorname{ADom}(I)$.
If R has arity k, then an instance is $R \in \mathcal{P}\left(A^{k}\right)$.
If IDB predicates have arities k_{1}, k_{2}, \ldots then an IDB instance is $J \in \mathcal{P}\left(A^{k_{1}}\right) \times \mathcal{P}\left(A^{k_{2}}\right) \times \cdots$

Immediate Consequence Operator:

$$
T_{P}: \mathcal{P}\left(A^{k_{1}}\right) \times \mathcal{P}\left(A^{k_{2}}\right) \times \cdots \rightarrow \mathcal{P}\left(A^{k_{1}}\right) \times \mathcal{P}\left(A^{k_{2}}\right) \times \cdots
$$

The semantics of the datalog program P is $\operatorname{lfp}\left(T_{p}\right)$.

Naive Evaluation Algorithm

$$
\begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty \\
& \quad J^{(t+1)}:=T_{P}\left(J^{(t)}\right) \\
& \quad \text { if } J^{(t+1)}=J^{(t)} \text { break }
\end{aligned}
$$

Notice: $J^{(0)} \subseteq J^{(1)} \subseteq \cdots$ is Kleene's sequence.

Theorem

The Naive Algorithm takes $O\left(A D o m(I)^{k}\right)$ iterations, where I is the EDB instance and k is the largest arity of any IDB.

Data complexity is in PTIME.

Examples in Datalog

Overview

- We have seen Transitive Closure. Can we write something different?
- Regular expressions, CFGs.
- Same generation.
- AND/OR reachability.

Regular Expressions

Find nodes reachable from 1 with a path labeled with (aab|aaac)*

Regular Expressions

Find nodes reachable from 1 with a path labeled with ($a a b \mid a a a c)^{*}$ EDB graph:

Regular Expressions

Find nodes reachable from 1 with a path labeled with (aab|aaac)* EDB graph:

Answer: 1, 4, 6.

Regular Expressions

Find nodes reachable from 1 with a path labeled with (aab|aaac)* EDB graph:

Automaton:

Answer: 1, 4, 6.

Regular Expressions

Find nodes reachable from 1 with a path labeled with (aab|aaac)* EDB graph:

Automaton:

Answer: 1, 4, 6 .
Q1(1) :-

Regular Expressions

Find nodes reachable from 1 with a path labeled with ($a a b \mid a a a c)^{*}$

EDB graph:

Answer: 1, 4, 6 .
Q1(1) :-

Automaton:

Q2 $(Y):-Q 1(X) \wedge E\left(X, Y,{ }^{\prime} a^{\prime}\right)$

Regular Expressions

Find nodes reachable from 1 with a path labeled with ($a a b \mid a a a c)^{*}$

EDB graph:

Answer: 1, 4, 6 .

$$
\begin{aligned}
& Q 1(1):- \\
& Q 3(Y):-Q 2(X) \wedge E\left(X, Y, a^{\prime}\right)
\end{aligned}
$$

Regular Expressions

Find nodes reachable from 1 with a path labeled with ($a a b \mid a a a c)^{*}$ EDB graph:

Answer: 1, 4, 6 .

$$
\begin{array}{ll}
Q 1(1):- & Q 2(Y):-Q 1(X) \wedge E\left(X, Y,,^{\prime} a^{\prime}\right) \\
Q 3(Y):-Q 2(X) \wedge E\left(X, Y,{ }^{\prime} a^{\prime}\right) & Q 1(Y):-Q 3(X) \wedge E\left(X, Y, b^{\prime}\right)
\end{array}
$$

Regular Expressions

Find nodes reachable from 1 with a path labeled with (aab|aaac)* EDB graph:

Answer: 1, 4, 6 .

$$
\begin{array}{ll}
Q 1(1):- & Q 2(Y):-Q 1(X) \wedge E\left(X, Y,{ }^{\prime} a^{\prime}\right) \\
Q 3(Y):-Q 2(X) \wedge E\left(X, Y,{ }^{\prime} a^{\prime}\right) & Q 1(Y):-Q 3(X) \wedge E\left(X, Y,{ }^{\prime} b^{\prime}\right) \\
Q 4(Y):-Q 3(X) \wedge E\left(X, Y,^{\prime} a^{\prime}\right) & Q 1(Y):-Q 4(X) \wedge E\left(X, Y,{ }^{\prime} c^{\prime}\right)
\end{array}
$$

Regular Expressions

Find nodes reachable from 1 with a path labeled with (aab|aaac)*

EDB graph:

Answer: 1, 4, 6 .

$$
\begin{array}{ll}
Q 1(1):- & Q 2(Y):-Q 1(X) \wedge E\left(X, Y, \prime^{\prime} a^{\prime}\right) \\
Q 3(Y):-Q 2(X) \wedge E\left(X, Y,^{\prime} a^{\prime}\right) & Q 1(Y):-Q 3(X) \wedge E\left(X, Y, b^{\prime}\right) \\
Q 4(Y):-Q 3(X) \wedge E\left(X, Y,^{\prime} a^{\prime}\right) & Q 1(Y):-Q 4(X) \wedge E\left(X, Y,{ }^{\prime} c^{\prime}\right)
\end{array}
$$

Answer (X) :- $Q 1(X)$
Automaton:

Discussion

- Automaton need not be deterministic.

Discussion

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \rightarrow \epsilon|S S| a S b$. How?

Discussion

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \rightarrow \epsilon|S S| a S b$. How?

$$
\begin{aligned}
& S(X, X):-\operatorname{Node}(X) \\
& S(X, Y):-S(X, Z) \wedge S(Z, Y) \\
& S(X, Y):-E\left(X, U, a^{\prime}\right) \wedge S(U, V) \wedge E\left(V, Y,^{\prime} b^{\prime}\right)
\end{aligned}
$$

Discussion

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \rightarrow \epsilon|S S| a S b$. How?

$$
\begin{aligned}
& S(X, X):-\operatorname{Node}(X) \\
& S(X, Y):-S(X, Z) \wedge S(Z, Y) \\
& S(X, Y):-E\left(X, U, a^{\prime} a^{\prime}\right) \wedge S(U, V) \wedge E\left(V, Y,^{\prime} b^{\prime}\right)
\end{aligned}
$$

- Exercise**: non-CFG, e.g. the language $\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$.

Discussion

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \rightarrow \epsilon|S S| a S b$. How?

$$
\begin{aligned}
& S(X, X):-\operatorname{Node}(X) \\
& S(X, Y):-S(X, Z) \wedge S(Z, Y) \\
& S(X, Y):-E\left(X, U,{ }^{\prime} a^{\prime}\right) \wedge S(U, V) \wedge E\left(V, Y,,^{\prime} b^{\prime}\right)
\end{aligned}
$$

- Exercise**: non-CFG, e.g. the language $\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$.
(won't discuss in class)

$$
\begin{aligned}
& T(X, X, Y, Y, Z, Z)::-\operatorname{Node}(X) \wedge \operatorname{Node}(Y) \wedge \operatorname{Node}(Z) \\
& T\left(X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}\right):-T\left(X_{1}, X_{3}, Y_{1}, Y_{3}, Z_{1}, Z_{3}\right) \wedge E\left(X_{3}, X_{2},^{\prime} a^{\prime}\right) \\
& \wedge E\left(Y_{3}, Y_{2}, b^{\prime}\right) \wedge E\left(Z_{3}, Z_{2},{ }^{\prime} c^{\prime}\right) \\
& \text { Answer }(X, Y):-T(X, U, V, U, V, Y)
\end{aligned}
$$

Same Generation

x, y are at the same generation
if they have a common ancestor z at the same distance.

Same Generation

x, y are at the same generation
if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

Same Generation

x, y are at the same generation if they have a common ancestor z

EDB graph: at the same distance.

Find people at the same generation with Fred.

Same Generation

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

EDB graph:

Answer: Fred, Eve, George

Same Generation

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$
\begin{aligned}
& S G(X, X) \text { :- Person }(X) \\
& S G(X, Y) \text { :- }
\end{aligned}
$$

EDB graph:

Answer: Fred, Eve, George

Same Generation

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$
\begin{aligned}
& S G(X, X):- \text { Person }(X) \\
& S G(X, Y) \text { :- ???? }
\end{aligned}
$$

EDB graph:

Answer: Fred, Eve, George

Same Generation

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

```
SG(X,X) :- Person (X)
SG(X,Y) :- SG(U,V)^E(U,X)\wedgeE(V,Y)
```

EDB graph:

Answer: Fred, Eve, George

Same Generation

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$
\begin{aligned}
S G(X, X) & :-\operatorname{Person}(X) \\
S G(X, Y) & :-S G(U, V) \wedge E(U, X) \wedge E(V, Y) \\
\text { Answer }(X) & :-S G\left({ }^{\prime} \operatorname{Fred}^{\prime}, X\right)
\end{aligned}
$$

EDB graph:

Answer: Fred, Eve, George

Discussion

- The examples so far are still just transitive at their essence! why?
- Recall that transitive closure is in NLOGSPACE. The next example goes beyond NLOGSPACE.

AND/OR-Graph Accessibility

OR-nodes: unlimited AND-children AND-nodes: two OR-children

AND/OR-Graph Accessibility

OR-nodes: unlimited AND-children
AND-nodes: two OR-children
$T(X, Y, Z)$:
OR-node X has AND-child with children Y, Z.

AND/OR-Graph Accessibility

OR-nodes: unlimited AND-children
AND-nodes: two OR-children
$T(X, Y, Z)$:
OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

AND/OR-Graph Accessibility

OR-nodes: unlimited AND-children AND-nodes: two OR-children
$T(X, Y, Z)$:
OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

EDB graph:

T	
X Y Z c a b c b c c a a b a a	

AND/OR-Graph Accessibility

OR-nodes: unlimited AND-children AND-nodes: two OR-children
$T(X, Y, Z)$:
OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

EDB graph:

T

X	Y	Z
c	a	b
c	b	c
c	a	a
b	a	a

Answer: a, b, c.

AND/OR-Graph Accessibility

OR-nodes: unlimited AND-children AND-nodes: two OR-children
$T(X, Y, Z)$:
OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

$$
\begin{aligned}
& A(a):- \\
& A(X):-T(X, Y, Z) \wedge A(Y) \wedge A(Z)
\end{aligned}
$$

EDB graph:

T

X	Y	Z
c	a	b
c	b	c
c	a	a
b	a	a

Answer: a, b, c.

Discussion

- AGAP is PTIME-complete. Recall: NLOGSPACE \subseteq PTIME and inclusion is conjecture to be strict.
- It follows that datalog can express strictly more than transitive closure.
- The data complexity of datalog is in PTIME.
- Limitation of "pure" datalog: monotone queries only.
- Montone queries have huge potential for optimizations (next).

Optimizing Monotone Datalog

Outline

- Semi-naive evaluation.
- Asynchronous execution: also discuss grounding.
- Will not discuss: Magic Set optimization

Naive, and Semi-naive

Naive

$$
\begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty \\
& J^{(t+1)}:=T_{P}\left(J^{(t)}\right) \\
& \text { if } J^{(t+1)}=J^{(t)} \\
& \text { break }
\end{aligned}
$$

Naive, and Semi-naive

Naive

$J^{(0)}:=\emptyset$
for $t=0, \infty$
$J^{(t+1)}:=T_{P}\left(J^{(t)}\right)$
if $J^{(t+1)}=J^{(t)}$
break

Semi-naive

$$
\begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Naive, and Semi-naive

Naive
$J^{(0)}:=\emptyset$
for $t=0, \infty$
$J^{(t+1)}:=T_{P}\left(J^{(t)}\right)$
if $J^{(t+1)}=J^{(t)}$
break

Semi-naive

$$
\begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

$w /$ incremental computation

$$
\begin{aligned}
& J^{(0)}:=\emptyset, \quad \Delta^{(0)}:=T_{P}(\emptyset) \\
& \text { for } t=1, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t-1)} \cup \Delta^{(t-1)}\right)-J^{(t)} \\
& \quad=\Delta T_{P}\left(J^{(t-1)}, \Delta^{(t-1)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Naive, and Semi-naive

Naive

$J^{(0)}:=\emptyset$
for $t=0, \infty$
$J^{(t+1)}:=T_{P}\left(J^{(t)}\right)$
if $J^{(t+1)}=J^{(t)}$
break
:---
for $t=0, \infty$
$\Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)}$
$J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)}$
if $\Delta^{(t)}=\emptyset$ break

$w /$ incremental computation

$$
\begin{aligned}
& J^{(0)}:=\emptyset, \Delta^{(0)}:=T_{P}(\emptyset) \\
& \text { for } t=1, \infty \\
& \begin{aligned}
\Delta^{(t)} & :=T_{P}\left(J^{(t-1)} \cup \Delta^{(t-1)}\right)-J^{(t)} \\
& =\Delta T_{P}\left(J^{(t-1)}, \Delta^{(t-1)}\right)-J^{(t)} \\
J^{(t+1)} & :=J^{(t)} \cup \Delta^{(t)}
\end{aligned} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Transitive Closure:

```
T(X,Y) :- E(X,Y)
T(X,Y) :- T(X,Z)\wedgeE(Z,Y)
```


Naive, and Semi-naive

Naive
$J^{(0)}:=\emptyset$
for $t=0, \infty$
$J^{(t+1)}:=T_{P}\left(J^{(t)}\right)$
if $J^{(t+1)}=J^{(t)}$
break

Semi-naive

$$
\begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

$w /$ incremental computation

$$
\begin{aligned}
& J^{(0)}:=\emptyset, \quad \Delta^{(0)}:=T_{P}(\emptyset) \\
& \text { for } t=1, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t-1)} \cup \Delta^{(t-1)}\right)-J^{(t)} \\
& \quad=\Delta T_{P}\left(J^{(t-1)}, \Delta^{(t-1)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Transitive Closure:

$$
T^{(0)}(X, Y):=\text { false }, \Delta^{(0)}(X, Y):=E(X, Y)
$$

```
T(X,Y) :- E(X,Y)
T(X,Y) :- T(X,Z)\wedgeE(Z,Y)
```


Naive, and Semi-naive

Naive
$J^{(0)}:=\emptyset$
for $t=0, \infty$
$J^{(t+1)}:=T_{P}\left(J^{(t)}\right)$
if $J^{(t+1)}=J^{(t)}$
break

Semi-naive

$$
\begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

$w /$ incremental computation

$$
\begin{aligned}
& J^{(0)}:=\emptyset, \quad \Delta^{(0)}:=T_{P}(\emptyset) \\
& \text { for } t=1, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t-1)} \cup \Delta^{(t-1)}\right)-J^{(t)} \\
& \quad=\Delta T_{P}\left(J^{(t-1)}, \Delta^{(t-1)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Transitive Closure:
$T(X, Y):-E(X, Y)$
$T(X, Y):-T(X, Z) \wedge E(Z, Y)$

Naive, and Semi-naive

Naive
\(\left.\begin{array}{|c|}\hline J^{(0)}:=\emptyset

for t=0, \infty

J^{(t+1)}:=T_{P}\left(J^{(t)}\right)

if J^{(t+1)}=J^{(t)}

break\end{array}\right]\)| $J^{(0)}:=\emptyset$ |
| :--- |
| for $t=0, \infty$ |
| $\Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)}$ |
| $J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)}$ |
| if $\Delta^{(t)}=\emptyset$ break |

Semi-naive
$w /$ incremental computation

$$
\begin{aligned}
& J^{(0)}:=\emptyset, \quad \Delta^{(0)}:=T_{P}(\emptyset) \\
& \text { for } t=1, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t-1)} \cup \Delta^{(t-1)}\right)-J^{(t)} \\
& \quad=\Delta T_{P}\left(J^{(t-1)}, \Delta^{(t-1)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Transitive Closure:

$$
T^{(0)}(X, Y):=\text { false }, \Delta^{(0)}(X, Y):=E(X, Y)
$$

$$
\text { for } t=1, \infty
$$

$T(X, Y):-E(X, Y)$

$$
\Delta^{(t)}(X, Y):=\Delta^{(t-1)}(X, Z) \wedge E(Z, Y) \wedge \neg T^{(t)}(X, Y)
$$

$$
T(X, Y):-T(X, Z) \wedge E(Z, Y)
$$

Naive, and Semi-naive

Naive

$$
\begin{array}{l|l}
\hline J^{(0)}:=\emptyset \\
\text { for } t=0, \infty \\
J^{(t+1)}:=T_{P}\left(J^{(t)}\right) \\
\text { if } J^{(t+1)}=J^{(t)} \\
\quad \text { break }
\end{array} \quad \begin{aligned}
& J^{(0)}:=\emptyset \\
& \text { for } t=0, \infty \\
& \Delta^{(t)}:=T_{P}\left(J^{(t)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

Semi-naive
$\mathrm{w} /$ incremental computation

$$
\begin{aligned}
& J^{(0)}:=\emptyset, \Delta^{(0)}:=T_{P}(\emptyset) \\
& \text { for } t=1, \infty \\
& \begin{aligned}
& \Delta^{(t)}:=T_{P}\left(J^{(t-1)} \cup \Delta^{(t-1)}\right)-J^{(t)} \\
& \quad=\Delta T_{P}\left(J^{(t-1)}, \Delta^{(t-1)}\right)-J^{(t)} \\
& J^{(t+1)}:=J^{(t)} \cup \Delta^{(t)}
\end{aligned} \\
& \text { if } \Delta^{(t)}=\emptyset \text { break }
\end{aligned}
$$

$$
T^{(0)}(X, Y):=\text { false, } \Delta^{(0)}(X, Y):=E(X, Y)
$$

$$
\text { for } t=1, \infty
$$

$$
\begin{aligned}
& T(X, Y):-E(X, Y) \\
& T(X, Y):-T(X, Z) \wedge E(Z, Y)
\end{aligned}
$$

$$
\Delta^{(t)}(X, Y):=\Delta^{(t-1)}(X, Z) \wedge E(Z, Y) \wedge \neg T^{(t)}(X, Y)
$$

$$
T^{(t+1)}(X, Y):=T^{(t)}(X, Y) \vee \Delta^{(t)}(X, Y)
$$

$$
\text { if } \Delta^{(t)}=\emptyset \text { break }
$$

Discussion

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

- Exponential number of queries:

$$
(A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie(C \cup \Delta C)
$$

Discussion

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

- Exponential number of queries:

$$
\begin{aligned}
& (A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie(C \cup \Delta C)=(A \bowtie B \bowtie C) \cup \\
& \quad \cup(\Delta A \bowtie B \bowtie C) \cup \cdots \cup(\Delta A \bowtie \Delta B \bowtie C) \cup \cdots \cup(\Delta A \bowtie \Delta B \bowtie \Delta C)
\end{aligned}
$$

Discussion

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

- Exponential number of queries:

$$
\begin{aligned}
& (A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie(C \cup \Delta C)=(A \bowtie B \bowtie C) \cup \\
& \quad \cup(\Delta A \bowtie B \bowtie C) \cup \cdots \cup(\Delta A \bowtie \Delta B \bowtie C) \cup \cdots \cup(\Delta A \bowtie \Delta B \bowtie \Delta C)
\end{aligned}
$$

- Mix of old/new tables (issue: new tables are bigger):

$$
(A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie(C \cup \Delta C)
$$

Discussion

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

- Exponential number of queries:

$$
\begin{aligned}
& (A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie(C \cup \Delta C)=(A \bowtie B \bowtie C) \cup \\
& \quad \cup(\Delta A \bowtie B \bowtie C) \cup \cdots \cup(\Delta A \bowtie \Delta B \bowtie C) \cup \cdots \cup(\Delta A \bowtie \Delta B \bowtie \Delta C)
\end{aligned}
$$

- Mix of old/new tables (issue: new tables are bigger):

$$
\begin{aligned}
& (A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie(C \cup \Delta C)=(A \bowtie B \bowtie C) \cup \\
& \quad \cup(\Delta A \bowtie B \bowtie C) \cup((A \cup \Delta A) \bowtie \Delta B \bowtie C) \cup((A \cup \Delta A) \bowtie(B \cup \Delta B) \bowtie \Delta C)
\end{aligned}
$$

Asynchronous Execution

- (Semi-) naive is synchronous: apply all rules to all tuples.
- Asynchronous execution:
apply some rules to some tuples.
- Simple principle: fair computation of a fixpoint.

Asynchronous Sequence

Posets $\left(P_{1}, \leq\right),\left(P_{2}, \leq\right)$, finite ranks, $f: P_{1} \times P_{2} \rightarrow P_{1}, g: P_{1} \times P_{2} \rightarrow P_{2}$.

Goal compute $\operatorname{Ifp}(f, g)$:

$$
(f(x, y), g(x, y))=(x, y)
$$

Asynchronous Sequence

Posets $\left(P_{1}, \leq\right),\left(P_{2}, \leq\right)$, finite ranks, $f: P_{1} \times P_{2} \rightarrow P_{1}, g: P_{1} \times P_{2} \rightarrow P_{2}$.
Goal compute $\operatorname{Ifp}(f, g)$:

$$
(f(x, y), g(x, y))=(x, y)
$$

Kleene's sequence:
$\left(x^{(0)}, y^{(0)}\right) \stackrel{\text { def }}{=}(\perp, \perp)$
$\left(x^{(t+1)}, y^{(t+1)}\right) \stackrel{\text { def }}{=}$
$\left(f\left(x^{(t)}, y^{(t)}\right), g\left(x^{(t)}, y^{(t)}\right)\right)$
Every step is an fg -step.

Asynchronous Sequence

Posets $\left(P_{1}, \leq\right),\left(P_{2}, \leq\right)$, finite ranks, $f: P_{1} \times P_{2} \rightarrow P_{1}, g: P_{1} \times P_{2} \rightarrow P_{2}$.

Goal compute $\operatorname{Ifp}(f, g)$:

$$
(f(x, y), g(x, y))=(x, y)
$$

Kleene's sequence:
$\left(x^{(0)}, y^{(0)}\right) \stackrel{\text { def }}{=}(\perp, \perp)$
$\left(x^{(t+1)}, y^{(t+1)}\right) \stackrel{\text { def }}{=}$

$$
\left(f\left(x^{(t)}, y^{(t)}\right), g\left(x^{(t)}, y^{(t)}\right)\right)
$$

Every step is an $f g$-step.

Asynchronous sequence:

$$
\begin{aligned}
& \left(u^{(0)}, v^{(0)}\right) \stackrel{\text { def }}{=}(\perp, \perp) \\
& \left(u^{(k+1)}, v^{(k+1)}\right) \stackrel{\text { def }}{=}
\end{aligned}
$$

$$
\begin{cases}\left(f\left(u^{(k)}, v^{(k)}\right), g\left(u^{(k)}, v^{(k)}\right)\right) & \text { or } \\ \left(f\left(u^{(k)}, v^{(k)}\right), v^{(k)}\right) & \text { or } \\ \left(u^{(k)}, g\left(u^{(k)}, v^{(k)}\right)\right) & \end{cases}
$$

$f g$-step, or f-step, or g-step.

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Sequence is fair if: $\forall k \exists m>k \exists n>k$ s.t:

- m is an f-step or $f g$-step, and
- n is a g-step or $f g$-step.

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Sequence is fair if: $\forall k \exists m>k \exists n>k$ s.t:

- m is an f-step or fg-step, and
- n is a g-step or $f g$-step.

Fact 2: If the sequence is fair, then $\exists k$ s.t. $\left(u^{(k)}, v^{(k)}\right)=\operatorname{Ifp}(f, g)$.

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Sequence is fair if: $\forall k \exists m>k \exists n>k$ s.t:

- m is an f-step or $f g$-step, and
- n is a g-step or $f g$-step.

Fact 2: If the sequence is fair, then $\exists k$ s.t. $\left(u^{(k)}, v^{(k)}\right)=\operatorname{Ifp}(f, g)$.
Proof suffices to prove: $\forall t \exists k,\left(x^{(t)}, y^{(t)}\right) \leq\left(u^{(k)}, v^{(k)}\right)$.

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Sequence is fair if: $\forall k \exists m>k \exists n>k$ s.t:

- m is an f-step or $f g$-step, and
- n is a g-step or $f g$-step.

Fact 2: If the sequence is fair, then $\exists k$ s.t. $\left(u^{(k)}, v^{(k)}\right)=\operatorname{Ifp}(f, g)$.
Proof suffices to prove: $\forall t \exists k,\left(x^{(t)}, y^{(t)}\right) \leq\left(u^{(k)}, v^{(k)}\right)$.
$\left(x^{(t+1)}, y^{(t+1)}\right)=\left(f\left(x^{(t)}, y^{(t)}\right), g\left(x^{(t)}, y^{(t)}\right)\right) \leq\left(f\left(u^{(k)}, v^{(k)}\right), g\left(u^{(k)}, v^{(k)}\right)\right)$

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Sequence is fair if: $\forall k \exists m>k \exists n>k$ s.t:

- m is an f-step or $f g$-step, and
- n is a g-step or $f g$-step.

Fact 2: If the sequence is fair, then $\exists k$ s.t. $\left(u^{(k)}, v^{(k)}\right)=\operatorname{Ifp}(f, g)$.
Proof suffices to prove: $\forall t \exists k,\left(x^{(t)}, y^{(t)}\right) \leq\left(u^{(k)}, v^{(k)}\right)$.
$\left(x^{(t+1)}, y^{(t+1)}\right)=\left(f\left(x^{(t)}, y^{(t)}\right), g\left(x^{(t)}, y^{(t)}\right)\right) \leq\left(f\left(u^{(k)}, v^{(k)}\right), g\left(u^{(k)}, v^{(k)}\right)\right)$
$\leq\left(f\left(u^{(m)}, v^{(m)}\right), g\left(u^{(n)}, v^{(n)}\right)\right)$

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $\left(u^{(k)}, v^{(k)}\right) \leq(x, y)$.

Sequence is fair if: $\forall k \exists m>k \exists n>k$ s.t:

- m is an f-step or $f g$-step, and
- n is a g-step or $f g$-step.

Fact 2: If the sequence is fair, then $\exists k$ s.t. $\left(u^{(k)}, v^{(k)}\right)=\operatorname{Ifp}(f, g)$.
Proof suffices to prove: $\forall t \exists k,\left(x^{(t)}, y^{(t)}\right) \leq\left(u^{(k)}, v^{(k)}\right)$.
$\left(x^{(t+1)}, y^{(t+1)}\right)=\left(f\left(x^{(t)}, y^{(t)}\right), g\left(x^{(t)}, y^{(t)}\right)\right) \leq\left(f\left(u^{(k)}, v^{(k)}\right), g\left(u^{(k)}, v^{(k)}\right)\right)$
$\leq\left(f\left(u^{(m)}, v^{(m)}\right), g\left(u^{(n)}, v^{(n)}\right)\right)=\left(u^{(m+1)}, v^{(n+1)}\right) \leq\left(u^{(p)}, v^{(p)}\right)$
where $p=\max (m, n)+1$.

Discussion

- Kleene's sequence has rank $\operatorname{rank}\left(P_{1}\right)+\operatorname{rank}\left(P_{2}\right)$; the asynchronous sequence could be as long as $\operatorname{rank}\left(P_{1}\right) \times \operatorname{rank}\left(P_{2}\right)$
- Application: nested recursion

$$
\begin{aligned}
& \operatorname{Ifp}(f, g)= \text { let } u=\operatorname{Ifp}(\lambda x . \quad \text { let } v=\operatorname{Ifp}(\lambda y \cdot g(x, y)) \\
&\quad \text { in }(f(x, v), v)) \\
& \text { in }(u, \operatorname{|fp}(\lambda y \cdot g(u, y)))
\end{aligned}
$$

RHS is asynchronous sequence with steps $g g g \cdots f g g g \cdots f g g g \cdots$

- Immediate generalization to n posets $\left(P_{1}, \leq\right) \times \cdots\left(P_{n}, \leq\right)$.

Grounding of a Datalog Program

What are the posets $\left(P_{1}, \leq\right),\left(P_{2}, \leq\right), \ldots$ for a datalog program?

- Option 1: P_{i} is $\left(\mathrm{ADom}^{k_{i}}, \subseteq\right)$ represents an IDB predicate.
- Option 2 (better): P_{i} is $(\{0,1\}, \leq)$ represents an IDB tuple.

Example

$$
\begin{aligned}
& R(X):-E(a, X) \\
& R(X):-R(Z) \wedge E(Z, X)
\end{aligned}
$$

Example

$$
\begin{aligned}
& R(X):-E(a, X) \\
& R(X):-R(Z) \wedge E(Z, X)
\end{aligned}
$$

EDB input graph:

Example

```
R(X) :- E(a,X)
R(X) :- R(Z)^E(Z,X)
```

Grounded program:

EDB input graph:

Example

```
R(X) :- E(a,X)
R(X) :- R(Z)^E(Z,X)
```

Grounded program:

EDB input graph:

```
R(a) :- E(a,a)
R(a) :- R(a)^E(a,a)
R(a) :- R(b)^E(b,a)
R(b) :- E(a,b)
R(b) :- R(a)^E(a,b)
R(b) :- R(b)^E(b,b)
```

$R(a):-E(a, a) \vee R(a) \wedge E(a, a) \vee R(b) \wedge E(b, a)$,
$R(b):-E(a, b) \vee R(a) \wedge E(a, b) \vee R(b) \wedge E(b, b)$

Example

```
\(R(X):-E(a, X)\)
\(R(X):-R(Z) \wedge E(Z, X)\)
```

Grounded program:
EDB input graph:
$R(a):-E(a, a)$
$R(a):-R(a) \wedge E(a, a)$
$R(a):-R(b) \wedge E(b, a)$
$R(b):-E(a, b)$
$R(b):-R(a) \wedge E(a, b)$
$R(b):-R(b) \wedge E(b, b)$
$R(a):-E(a, a) \vee R(a) \wedge E(a, a) \vee R(b) \wedge E(b, a)$,
$R(b):-E(a, b) \vee R(a) \wedge E(a, b) \vee R(b) \wedge E(b, b)$
The grounded program allows more fine-grained asynchronous execution.

Summary

- Main purpose of datalog is to add recursion.
- Least-fixpoint semantics; Kleene's sequence; Naive algorithm.
- Cool optimizations: semi-naive, magic-sets (difficult!), asynchronous evaluation.
- Can express PTIME-complete problems (AGAP).
- But limited to monotone queries.

Next lecture: adding negation to datalog.

Stanley, R. P. (1999).
Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge.
With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

