
CS294-248 Special Topics in Database Theory
Unit 9: Datalog (Part 2)

Dan Suciu

University of Washington

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Announcements

Next Tuesday, Nov. 28: office hours 2pm-4:30pm.

Please submit a short report on your project by Wednesday, Nov. 29.

Project presentations: Thursday, Nov. 30, 9:30am, Calvin 116. More
details TBD.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 2 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Recursion and Negation

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 3 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Recap: Datalog

Datalog = set of rules.

Immediate consequence operator

Least fixpoint semantics

Naive algorithm J(0) ⊆ J(1) ⊆ · · ·

Example:

T (X ,Y) :- E (X ,Y)
T (X ,Y) :- T (X ,Z)∧E (Z ,X)

Non-example:

C (X) :- A(X) ∧ ¬B(X)

What happens if we allow negation?

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 4 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Three Examples

Transitive closure
of the complement graph:

EC (X ,Y) :- V (X) ∧ V (Y) ∧ ¬E (X ,Y)
T (X ,Y) :- EC(X ,Y)
T (X ,Y) :- T (X ,Z) ∧ EC(Z ,X)

Complement of the
transitive closure:

T (X ,Y) :- E(X ,Y)
T (X ,Y) :- T (X ,Z) ∧ E(Z ,X)
Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

The Win-Move Game:

W (X) :- E(X ,Y) ∧ ¬W (Y)

(will explain it later)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 5 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Three Examples

Transitive closure
of the complement graph:

EC (X ,Y) :- V (X) ∧ V (Y) ∧ ¬E (X ,Y)
T (X ,Y) :- EC(X ,Y)
T (X ,Y) :- T (X ,Z) ∧ EC(Z ,X)

Complement of the
transitive closure:

T (X ,Y) :- E(X ,Y)
T (X ,Y) :- T (X ,Z) ∧ E(Z ,X)
Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

The Win-Move Game:

W (X) :- E(X ,Y) ∧ ¬W (Y)

(will explain it later)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 5 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Three Examples

Transitive closure
of the complement graph:

EC (X ,Y) :- V (X) ∧ V (Y) ∧ ¬E (X ,Y)
T (X ,Y) :- EC(X ,Y)
T (X ,Y) :- T (X ,Z) ∧ EC(Z ,X)

Complement of the
transitive closure:

T (X ,Y) :- E(X ,Y)
T (X ,Y) :- T (X ,Z) ∧ E(Z ,X)
Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

The Win-Move Game:

W (X) :- E(X ,Y) ∧ ¬W (Y)

(will explain it later)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 5 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X) :- S(X) ∧ ¬B(X)
B(X) :- S(X) ∧ ¬A(X)

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 6 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X) :- S(X) ∧ ¬B(X)
B(X) :- S(X) ∧ ¬A(X)

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 6 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X) :- S(X) ∧ ¬B(X)
B(X) :- S(X) ∧ ¬A(X)

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 6 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X) :- S(X) ∧ ¬B(X)
B(X) :- S(X) ∧ ¬A(X)

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 6 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X) :- S(X) ∧ ¬B(X)
B(X) :- S(X) ∧ ¬A(X)

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 6 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X) :- S(X) ∧ ¬B(X)
B(X) :- S(X) ∧ ¬A(X)

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 6 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Outline

Semi-positive, stratified datalog

Semantics motivated by logic.

Semantics motivated by computation.

Mostly based on [Abiteboul et al., 1995].

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 7 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Semi-Positive and Stratified Datalog

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 8 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Semi-positive Datalog

EDB atoms may be positive or negated.

IDB atoms can only be positive.

Example: transitive closure of the complement graph:

EC (X ,Y) :- V (X) ∧ V (Y) ∧ ¬E (X ,Y)
T (X ,Y) :- EC (X ,Y)
T (X ,Y) :- T (X ,Z) ∧ EC (Z ,X)

The Immediate Consequence Operator is monotone.

Semantics: least fixpoint of the ICO.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 9 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Semi-positive Datalog

EDB atoms may be positive or negated.

IDB atoms can only be positive.

Example: transitive closure of the complement graph:

EC (X ,Y) :- V (X) ∧ V (Y) ∧ ¬E (X ,Y)
T (X ,Y) :- EC (X ,Y)
T (X ,Y) :- T (X ,Z) ∧ EC (Z ,X)

The Immediate Consequence Operator is monotone.

Semantics: least fixpoint of the ICO.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 9 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stratified Datalog: Definition

Stratification: assign to each IDB predicate a stratum s(R) ∈ N.

A program P is stratified if there exists a stratification such that:

▶ For positive atoms A(X) :- · · · ∧ B(Y) ∧ · · · : s(A) ≥ s(B).

▶ For any negative atoms A(X) :- · · · ∧ ¬B(Y) ∧ · · · : s(A) > s(B).

Semantics: for each stratum s = 1, 2, . . ., view it as a semi-positive
datalog program, compute its fixpoint.

The output is called perfect model; it is not a minimal model!

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 10 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stratified Datalog: Definition

Stratification: assign to each IDB predicate a stratum s(R) ∈ N.

A program P is stratified if there exists a stratification such that:

▶ For positive atoms A(X) :- · · · ∧ B(Y) ∧ · · · : s(A) ≥ s(B).

▶ For any negative atoms A(X) :- · · · ∧ ¬B(Y) ∧ · · · : s(A) > s(B).

Semantics: for each stratum s = 1, 2, . . ., view it as a semi-positive
datalog program, compute its fixpoint.

The output is called perfect model; it is not a minimal model!

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 10 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stratified Datalog: Definition

Stratification: assign to each IDB predicate a stratum s(R) ∈ N.

A program P is stratified if there exists a stratification such that:

▶ For positive atoms A(X) :- · · · ∧ B(Y) ∧ · · · : s(A) ≥ s(B).

▶ For any negative atoms A(X) :- · · · ∧ ¬B(Y) ∧ · · · : s(A) > s(B).

Semantics: for each stratum s = 1, 2, . . ., view it as a semi-positive
datalog program, compute its fixpoint.

The output is called perfect model; it is not a minimal model!

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 10 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stratified Datalog: Definition

Stratification: assign to each IDB predicate a stratum s(R) ∈ N.

A program P is stratified if there exists a stratification such that:

▶ For positive atoms A(X) :- · · · ∧ B(Y) ∧ · · · : s(A) ≥ s(B).

▶ For any negative atoms A(X) :- · · · ∧ ¬B(Y) ∧ · · · : s(A) > s(B).

Semantics: for each stratum s = 1, 2, . . ., view it as a semi-positive
datalog program, compute its fixpoint.

The output is called perfect model; it is not a minimal model!

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 10 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Example

T (X ,Y) :- E (X ,Y)
T (X ,Y) :- T (X ,Z) ∧ E (Z ,X)
Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

Stratum 1: T
Stratum 2: Answ

Semantics:
T = transitive closure, Answ = its complement

This is not the least fixpoint (minimal model) why??
The following is also a fixpoint:1

T = V × V , Answ = ∅

1Assuming no isolated nodes
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 11 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Example

T (X ,Y) :- E (X ,Y)
T (X ,Y) :- T (X ,Z) ∧ E (Z ,X)
Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

Stratum 1: T
Stratum 2: Answ

Semantics:
T = transitive closure, Answ = its complement

This is not the least fixpoint (minimal model) why??

The following is also a fixpoint:1

T = V × V , Answ = ∅

1Assuming no isolated nodes
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 11 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Example

T (X ,Y) :- E (X ,Y)
T (X ,Y) :- T (X ,Z) ∧ E (Z ,X)
Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

Stratum 1: T
Stratum 2: Answ

Semantics:
T = transitive closure, Answ = its complement

This is not the least fixpoint (minimal model) why??
The following is also a fixpoint:1

T = V × V , Answ = ∅

1Assuming no isolated nodes
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 11 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Stratified datalog is by far the most popular extension of datalog with
negation.

It is limited: it completely prevents the interleaving of recursion and
negation. The following is not allowed:

A :- ¬B
B :- ¬A

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 12 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Logic-Based Extensions

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 13 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Logic-Based Extensions

Stable Models

Well Founded Model

Representative example: the Win-Move Game (next)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 14 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a) a

b

c

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a) a

b

c
¬W(c)

W(b)

¬W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a) a

b

c

a

b

c

d

¬W(c)

W(b)

¬W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a) a

b

c

a

b

c

d

¬W(c)

W(b)

¬W(a)

¬W(d)

W(c)

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

a

b c

d

¬W(b)

¬W(d)

W(c)

W(a) a

b

c

a

b

c

d

¬W(c)

W(b)

¬W(a)

¬W(d)

W(c)

??

??

W (X) :- E (X ,Y) ∧ ¬W (Y)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 15 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Least Fixpoint Logic (LFP) is FO extended with monotone fixpoint.
E.g. the win-move game:

lfpW (x)(∃y(E (x , y) ∧ ∀z(E (y , z) ⇒ W (z))))

[Chandra and Harel, 1985] claimed that LFP= stratified datalog.

[Kolaitis, 1991] disproved it: the win-move game ̸∈ stratified datalog.

Hence: need datalog extensions beyond stratified datalog.

Before that we discuss two simple technical constructs:

grounded program and reduct

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 16 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Least Fixpoint Logic (LFP) is FO extended with monotone fixpoint.
E.g. the win-move game:

lfpW (x)(∃y(E (x , y) ∧ ∀z(E (y , z) ⇒ W (z))))

[Chandra and Harel, 1985] claimed that LFP= stratified datalog.

[Kolaitis, 1991] disproved it: the win-move game ̸∈ stratified datalog.

Hence: need datalog extensions beyond stratified datalog.

Before that we discuss two simple technical constructs:

grounded program and reduct

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 16 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Least Fixpoint Logic (LFP) is FO extended with monotone fixpoint.
E.g. the win-move game:

lfpW (x)(∃y(E (x , y) ∧ ∀z(E (y , z) ⇒ W (z))))

[Chandra and Harel, 1985] claimed that LFP= stratified datalog.

[Kolaitis, 1991] disproved it: the win-move game ̸∈ stratified datalog.

Hence: need datalog extensions beyond stratified datalog.

Before that we discuss two simple technical constructs:

grounded program and reduct

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 16 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Least Fixpoint Logic (LFP) is FO extended with monotone fixpoint.
E.g. the win-move game:

lfpW (x)(∃y(E (x , y) ∧ ∀z(E (y , z) ⇒ W (z))))

[Chandra and Harel, 1985] claimed that LFP= stratified datalog.

[Kolaitis, 1991] disproved it: the win-move game ̸∈ stratified datalog.

Hence: need datalog extensions beyond stratified datalog.

Before that we discuss two simple technical constructs:

grounded program and reduct

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 16 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Least Fixpoint Logic (LFP) is FO extended with monotone fixpoint.
E.g. the win-move game:

lfpW (x)(∃y(E (x , y) ∧ ∀z(E (y , z) ⇒ W (z))))

[Chandra and Harel, 1985] claimed that LFP= stratified datalog.

[Kolaitis, 1991] disproved it: the win-move game ̸∈ stratified datalog.

Hence: need datalog extensions beyond stratified datalog.

Before that we discuss two simple technical constructs:

grounded program and reduct

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 16 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Grounded Datalog Program

A grounded atom, or a fact, is an atom without
variables

A grounded rule is a rule whose atoms are
grounded.

The grounding of a program P consists of all
possible groundings of its rules

a

b

c

d

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧ ¬W (b)
W (b) :- E (b, a) ∧ ¬W (a)
W (b) :- E (b, c) ∧ ¬W (c)
W (c) :- E (c , d) ∧ ¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 17 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Reduct

P
def
= the grounded program, J = any set of grounded atoms;

The reduct, PJ is obtained as follows:

Remove all rules with a negated atom in J.

Remove all remaining negated atoms.

PJ is monotone; lfp(PJ) exists; J1 ⊆ J2 implies lfp(PJ1) ⊇ lfp(PJ2)

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)
W (b) :- E(b, c) ∧ ¬W (c)
W (c) :- E(c, d) ∧ ¬W (d)

J = {W (a),W (d)};

W (a) :- E(a, b) ∧¬W (b)

W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (a),W (b)}

J = {W (a),W (b),W (d)};

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (b)}

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 18 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Reduct

P
def
= the grounded program, J = any set of grounded atoms;

The reduct, PJ is obtained as follows:

Remove all rules with a negated atom in J.

Remove all remaining negated atoms.

PJ is monotone; lfp(PJ) exists; J1 ⊆ J2 implies lfp(PJ1) ⊇ lfp(PJ2)

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)
W (b) :- E(b, c) ∧ ¬W (c)
W (c) :- E(c, d) ∧ ¬W (d)

J = {W (a),W (d)};

W (a) :- E(a, b) ∧¬W (b)

W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (a),W (b)}

J = {W (a),W (b),W (d)};

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (b)}

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 18 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Reduct

P
def
= the grounded program, J = any set of grounded atoms;

The reduct, PJ is obtained as follows:

Remove all rules with a negated atom in J.

Remove all remaining negated atoms.

PJ is monotone; lfp(PJ) exists; J1 ⊆ J2 implies lfp(PJ1) ⊇ lfp(PJ2)

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)
W (b) :- E(b, c) ∧ ¬W (c)
W (c) :- E(c, d) ∧ ¬W (d)

J = {W (a),W (d)};

W (a) :- E(a, b) ∧¬W (b)

W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (a),W (b)}

J = {W (a),W (b),W (d)};

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (b)}

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 18 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

The Reduct

P
def
= the grounded program, J = any set of grounded atoms;

The reduct, PJ is obtained as follows:

Remove all rules with a negated atom in J.

Remove all remaining negated atoms.

PJ is monotone; lfp(PJ) exists; J1 ⊆ J2 implies lfp(PJ1) ⊇ lfp(PJ2)

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)
W (b) :- E(b, c) ∧ ¬W (c)
W (c) :- E(c, d) ∧ ¬W (d)

J = {W (a),W (d)};

W (a) :- E(a, b) ∧¬W (b)

W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (a),W (b)}

J = {W (a),W (b),W (d)};

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (b)}

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 18 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d¬W(d)

W(c)

W(a)

¬W(b)

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d¬W(d)

W(c)

W(b)

¬W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)

W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d¬W(d)

W(c)

W(b)

W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d¬W(d)

W(c)

W(b)

W(a)

Not Stable

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d¬W(d)

W(c)

¬W(b)

¬W(a)

W (X) :- E (X ,Y) ∧ ¬W (Y)

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)

W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 19 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Stable models introduced by [Gelfond and Lifschitz, 1988]

Elegant, principled definition.

But: NP-hard to check if there exists any stable model.

A stratified program has a unique stable model, which is the perfect model.

A(1) :-

B(1) :- ¬A(1)
C(1) :- A(1)

C(1) :- C(1) ∧ ¬B(1)

Perfect model: J = {A(1),C (1)}

Not stable: J = {A(1),B(1),C (1)} why?

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 20 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d¬W(d)

¬W(c)

¬W(b)

¬W(a)

J(0) = ∅

J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d¬W(d)

¬W(c)

¬W(b)

¬W(a)

J(0) = ∅

J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)

W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

W(c)

W(b)

W(a)

¬W(d)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}

J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)

W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

W(c)

W(b)

W(a)

¬W(d)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}

J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

W(c)

W(b)

W(a)

¬W(d)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}

J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d¬W(d)

¬W(b)

¬W(a)

W(c)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)}

J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d¬W(d)

¬W(b)

¬W(a)

W(c)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)}

J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)

W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

W(c)

W(b)

W(a)

¬W(d)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}

J(4) = {W (c)} . . .
Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)

W (b) :- E (b, a) ∧¬W (a)

W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

W(c)

W(b)

W(a)

¬W(d)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}

J(4) = {W (c)} . . .
Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d¬W(d)

¬W(b)

¬W(a)

W(c)

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)

W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d¬W(d)

W(c)

??

??

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 21 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Well-founded models can be computed in PTIME.

Yet, I don’t know of any system that supports it.
Maybe because of the 3-valued logic?

Next: two other semantics motivated by computation.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 22 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Computation-Based Extensions

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 23 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Computation-Based Extensions

Datalog with inflationary fixpoint semantics.

Datalog with partial fixpoint semantics.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 24 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Inflationary Fixpoint

Let P be a datalog¬ program, TP its ICO.

The inflationary fixpoint is ifp(P)
def
=

⋃
t≥0 Jt , where:

J0
def
= ∅, Jt+1

def
= Jt ∪ TP(Jt)

Fact

ifp(P) can be computed in PTIME in the size of the EDB I .

why?

Because J0 ⊆ J1 ⊆ · · · ⊆ (ADom(I))k

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 25 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Inflationary Fixpoint

Let P be a datalog¬ program, TP its ICO.

The inflationary fixpoint is ifp(P)
def
=

⋃
t≥0 Jt , where:

J0
def
= ∅, Jt+1

def
= Jt ∪ TP(Jt)

Fact

ifp(P) can be computed in PTIME in the size of the EDB I .

why? Because J0 ⊆ J1 ⊆ · · · ⊆ (ADom(I))k

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 25 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Partial Fixpoint

The partial fixpoint is:

pfp(P)
def
=

{
Jt0 if Jt0 = Jt0+1

∅ if Jt ̸= Jt+1,∀t

where
J0

def
= ∅, Jt+1

def
= TP(Jt)

Fact

pfp(P) can be computed in PSPACE in the size of the EDB I .

why?

each |Jt | has size polynomial in ADom(I).

Detect non-termination using a counter.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 26 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Partial Fixpoint

The partial fixpoint is:

pfp(P)
def
=

{
Jt0 if Jt0 = Jt0+1

∅ if Jt ̸= Jt+1,∀t

where
J0

def
= ∅, Jt+1

def
= TP(Jt)

Fact

pfp(P) can be computed in PSPACE in the size of the EDB I .

why? each |Jt | has size polynomial in ADom(I).

Detect non-termination using a counter.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 26 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

How To Express Negation

It’s harder than one may think!

Complement of the TC:

T (X ,Y) :- E(X ,Y)

T (X ,Y) :- T (X ,Z) ∧ E(Z ,X)

Answ(X ,Y) :- V (X) ∧ V (Y)

∧¬T (X ,Y)

ifp(P) is incorrect!

Detect the last step
[Abiteboul et al., 1995, Ex.14.4.2]

T (X ,Y) :- E(X ,Y)

T (X ,Y) :- T (X ,Z) ∧ E(Z ,Y)

Tprev(X ,Y) :- T (X ,Y)

Tprev-not-last(X ,Y) :- T (X ,Y)∧
∧T (X ′,Z ′) ∧ E(Z ′,Y ′) ∧ ¬T (X ′,Y ′)

Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

∧Tprev(X
′,Y ′) ∧ ¬Tprev-not-last(X

′,Y ′)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 27 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

How To Express Negation

It’s harder than one may think!

Complement of the TC:

T (X ,Y) :- E(X ,Y)

T (X ,Y) :- T (X ,Z) ∧ E(Z ,X)

Answ(X ,Y) :- V (X) ∧ V (Y)

∧¬T (X ,Y)

ifp(P) is incorrect!

Detect the last step
[Abiteboul et al., 1995, Ex.14.4.2]

T (X ,Y) :- E(X ,Y)

T (X ,Y) :- T (X ,Z) ∧ E(Z ,Y)

Tprev(X ,Y) :- T (X ,Y)

Tprev-not-last(X ,Y) :- T (X ,Y)∧
∧T (X ′,Z ′) ∧ E(Z ′,Y ′) ∧ ¬T (X ′,Y ′)

Answ(X ,Y) :- V (X) ∧ V (Y) ∧ ¬T (X ,Y)

∧Tprev(X
′,Y ′) ∧ ¬Tprev-not-last(X

′,Y ′)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 27 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Descriptive Complexity

Datalog¬ cannot express parity, no matter which semantics we adopt.

If we have access to an order relation < then we can express parity as:2

E (X ,Y) :- succ(X ,Z) ∧ succ(Z ,Y)

E (X ,Y) :- E (X ,Z) ∧ E (Z ,Y) // even-length distance

Even() :- R(X) ∧min(X) ∧ E (X ,Y) ∧max(Y) ∧ R(Y)

Theorem (Descriptive Complexity [Vardi, 1982, Immerman, 1986])

Datalog¬(<, ifp) expresses precisely queries in PTIME.

Datalog¬(<, pfp) expresses precisely queries in PSPACE.

2Exercise: express succ(X ,Y), min(X), max(Y) using <.
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 28 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Descriptive Complexity

Datalog¬ cannot express parity, no matter which semantics we adopt.

If we have access to an order relation < then we can express parity as:2

E (X ,Y) :- succ(X ,Z) ∧ succ(Z ,Y)

E (X ,Y) :- E (X ,Z) ∧ E (Z ,Y) // even-length distance

Even() :- R(X) ∧min(X) ∧ E (X ,Y) ∧max(Y) ∧ R(Y)

Theorem (Descriptive Complexity [Vardi, 1982, Immerman, 1986])

Datalog¬(<, ifp) expresses precisely queries in PTIME.

Datalog¬(<, pfp) expresses precisely queries in PSPACE.

2Exercise: express succ(X ,Y), min(X), max(Y) using <.
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 28 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Descriptive Complexity

Datalog¬ cannot express parity, no matter which semantics we adopt.

If we have access to an order relation < then we can express parity as:2

E (X ,Y) :- succ(X ,Z) ∧ succ(Z ,Y)

E (X ,Y) :- E (X ,Z) ∧ E (Z ,Y) // even-length distance

Even() :- R(X) ∧min(X) ∧ E (X ,Y) ∧max(Y) ∧ R(Y)

Theorem (Descriptive Complexity [Vardi, 1982, Immerman, 1986])

Datalog¬(<, ifp) expresses precisely queries in PTIME.

Datalog¬(<, pfp) expresses precisely queries in PSPACE.

2Exercise: express succ(X ,Y), min(X), max(Y) using <.
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 28 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Discussion

Datalog: simple, elegant, appealing. New resurgence after a 40 years
history.

Stratified datalog¬ is a simple and practical extension.

Beyond that, it becomes questionable.

But the theory is beautiful. A famous result:

Theorem ([Abiteboul et al., 1992])

datalog¬(ifp) = datalog¬(pfp) iff PTIME=PSPACE.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 29 / 29

Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Abiteboul, S., Hull, R., and Vianu, V. (1995).

Foundations of Databases.
Addison-Wesley.

Abiteboul, S., Vardi, M. Y., and Vianu, V. (1992).

Fixpoint logics, relational machines, and computational complexity.
In Proceedings of the Seventh Annual Structure in Complexity Theory Conference, Boston, Massachusetts, USA, June
22-25, 1992, pages 156–168. IEEE Computer Society.

Chandra, A. K. and Harel, D. (1985).

Horn clauses queries and generalizations.
J. Log. Program., 2(1):1–15.

Gelfond, M. and Lifschitz, V. (1988).

The stable model semantics for logic programming.
In Kowalski, R. A. and Bowen, K. A., editors, Logic Programming, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press.

Immerman, N. (1986).

Relational queries computable in polynomial time.
Inf. Control., 68(1-3):86–104.

Kolaitis, P. G. (1991).

The expressive power of stratified programs.
Inf. Comput., 90(1):50–66.

Vardi, M. Y. (1982).

The complexity of relational query languages (extended abstract).
In Lewis, H. R., Simons, B. B., Burkhard, W. A., and Landweber, L. H., editors, Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 137–146. ACM.

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 29 / 29

	Recursion and Negation
	Stratified Datalog
	Logic-Based Extensions
	Computation-Based Extensions

