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Announcements

Next Tuesday, Nov. 28: office hours 2pm-4:30pm.

Please submit a short report on your project by Wednesday, Nov. 29.

Project presentations: Thursday, Nov. 30, 9:30am, Calvin 116. More
details TBD.
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Recursion and Negation
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Recap: Datalog

Datalog = set of rules.

Immediate consequence operator

Least fixpoint semantics

Naive algorithm J(0) ⊆ J(1) ⊆ · · ·

Example:

T (X ,Y ) :- E (X ,Y )
T (X ,Y ) :- T (X ,Z )∧E (Z ,X )

Non-example:

C (X ) :- A(X ) ∧ ¬B(X )

What happens if we allow negation?
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Three Examples

Transitive closure
of the complement graph:

EC (X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬E (X ,Y )
T (X ,Y ) :- EC(X ,Y )
T (X ,Y ) :- T (X ,Z) ∧ EC(Z ,X )

Complement of the
transitive closure:

T (X ,Y ) :- E(X ,Y )
T (X ,Y ) :- T (X ,Z) ∧ E(Z ,X )
Answ(X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬T (X ,Y )

The Win-Move Game:

W (X ) :- E(X ,Y ) ∧ ¬W (Y )

(will explain it later)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 5 / 29



Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Three Examples

Transitive closure
of the complement graph:

EC (X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬E (X ,Y )
T (X ,Y ) :- EC(X ,Y )
T (X ,Y ) :- T (X ,Z) ∧ EC(Z ,X )

Complement of the
transitive closure:

T (X ,Y ) :- E(X ,Y )
T (X ,Y ) :- T (X ,Z) ∧ E(Z ,X )
Answ(X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬T (X ,Y )

The Win-Move Game:

W (X ) :- E(X ,Y ) ∧ ¬W (Y )

(will explain it later)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 5 / 29



Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

Three Examples

Transitive closure
of the complement graph:

EC (X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬E (X ,Y )
T (X ,Y ) :- EC(X ,Y )
T (X ,Y ) :- T (X ,Z) ∧ EC(Z ,X )

Complement of the
transitive closure:

T (X ,Y ) :- E(X ,Y )
T (X ,Y ) :- T (X ,Z) ∧ E(Z ,X )
Answ(X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬T (X ,Y )

The Win-Move Game:

W (X ) :- E(X ,Y ) ∧ ¬W (Y )

(will explain it later)

Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 5 / 29



Recursion and Negation Stratified Datalog Logic-Based Extensions Computation-Based Extensions

But Recursion and Negation Don’t Mix

A(X ) :- S(X ) ∧ ¬B(X )
B(X ) :- S(X ) ∧ ¬A(X )

EDB is S = {1}

Fixpoint 1: A = {1},B = ∅.

Fixpoint 2: A = ∅,B = {1}

Pre-fixpoint 3: A = B = {1}

A simpler example:

A :- ¬B
B :- ¬A

ICO not monotone! Need new semantics
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Outline

Semi-positive, stratified datalog

Semantics motivated by logic.

Semantics motivated by computation.

Mostly based on [Abiteboul et al., 1995].
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Semi-Positive and Stratified Datalog
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Semi-positive Datalog

EDB atoms may be positive or negated.

IDB atoms can only be positive.

Example: transitive closure of the complement graph:

EC (X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬E (X ,Y )
T (X ,Y ) :- EC (X ,Y )
T (X ,Y ) :- T (X ,Z ) ∧ EC (Z ,X )

The Immediate Consequence Operator is monotone.

Semantics: least fixpoint of the ICO.
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Stratified Datalog: Definition

Stratification: assign to each IDB predicate a stratum s(R) ∈ N.

A program P is stratified if there exists a stratification such that:

▶ For positive atoms A(X ) :- · · · ∧ B(Y ) ∧ · · · : s(A) ≥ s(B).

▶ For any negative atoms A(X ) :- · · · ∧ ¬B(Y ) ∧ · · · : s(A) > s(B).

Semantics: for each stratum s = 1, 2, . . ., view it as a semi-positive
datalog program, compute its fixpoint.

The output is called perfect model; it is not a minimal model!
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Example

T (X ,Y ) :- E (X ,Y )
T (X ,Y ) :- T (X ,Z ) ∧ E (Z ,X )
Answ(X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬T (X ,Y )

Stratum 1: T
Stratum 2: Answ

Semantics:
T = transitive closure, Answ = its complement

This is not the least fixpoint (minimal model) why??
The following is also a fixpoint:1

T = V × V , Answ = ∅

1Assuming no isolated nodes
Dan Suciu Topics in DB Theory: Unit 9b Fall 2023 11 / 29
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Discussion

Stratified datalog is by far the most popular extension of datalog with
negation.

It is limited: it completely prevents the interleaving of recursion and
negation. The following is not allowed:

A :- ¬B
B :- ¬A
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Logic-Based Extensions
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Logic-Based Extensions

Stable Models

Well Founded Model

Representative example: the Win-Move Game (next)
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The Win-Move Game

Players I, II take turns
moving a pebble in a
graph.

Player who cannot move
loses.

For each node X , does
Player I have a winning
strategy?

W (X ) :- E (X ,Y ) ∧ ¬W (Y )
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Discussion

Least Fixpoint Logic (LFP) is FO extended with monotone fixpoint.
E.g. the win-move game:

lfpW (x)(∃y(E (x , y) ∧ ∀z(E (y , z) ⇒ W (z))))

[Chandra and Harel, 1985] claimed that LFP= stratified datalog.

[Kolaitis, 1991] disproved it: the win-move game ̸∈ stratified datalog.

Hence: need datalog extensions beyond stratified datalog.

Before that we discuss two simple technical constructs:

grounded program and reduct
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The Grounded Datalog Program

A grounded atom, or a fact, is an atom without
variables

A grounded rule is a rule whose atoms are
grounded.

The grounding of a program P consists of all
possible groundings of its rules

a

b

c

d

W (X ) :- E (X ,Y ) ∧ ¬W (Y )

W (a) :- E (a, b) ∧ ¬W (b)
W (b) :- E (b, a) ∧ ¬W (a)
W (b) :- E (b, c) ∧ ¬W (c)
W (c) :- E (c , d) ∧ ¬W (d)
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The Reduct

P
def
= the grounded program, J = any set of grounded atoms;

The reduct, PJ is obtained as follows:

Remove all rules with a negated atom in J.

Remove all remaining negated atoms.

PJ is monotone; lfp(PJ) exists; J1 ⊆ J2 implies lfp(PJ1) ⊇ lfp(PJ2)

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)
W (b) :- E(b, c) ∧ ¬W (c)
W (c) :- E(c, d) ∧ ¬W (d)

J = {W (a),W (d)};

W (a) :- E(a, b) ∧¬W (b)

W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (a),W (b)}

J = {W (a),W (b),W (d)};

W (a) :- E(a, b) ∧ ¬W (b)
W (b) :- E(b, a) ∧ ¬W (a)

W (b) :- E(b, c) ∧¬W (c)

W (c) :- E(c, d) ∧ ¬W (d)

lfp(PJ) = {W (b)}
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Stable Models

J is a stable model if J = lfp(PJ)

Example: J = {W (a),W (c)}

Example: J = {W (b),W (c)}

Non-example: J = {W (a),W (b),W (c)} why??

Non-example: J = {W (c)} why??

a

b

c

d

W (X ) :- E (X ,Y ) ∧ ¬W (Y )

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)
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Discussion

Stable models introduced by [Gelfond and Lifschitz, 1988]

Elegant, principled definition.

But: NP-hard to check if there exists any stable model.

A stratified program has a unique stable model, which is the perfect model.

A(1) :-

B(1) :- ¬A(1)
C(1) :- A(1)

C(1) :- C(1) ∧ ¬B(1)

Perfect model: J = {A(1),C (1)}

Not stable: J = {A(1),B(1),C (1)} why?
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Well-Founded Model

Alternating Fixpoint:

J(0)
def
= ∅, J(t+1) def

= lfp(PJ(t))

J(0) ⊆ J(2) ⊆ J(4) ⊆ · · · ⊆ J(5) ⊆ J(3) ⊆ J(1).⋃
t J

(2t) def
= certain-

⋂
t J

(2t+1) def
= possible-facts

a

b

c

d

J(0) = ∅ J(1) = {W (a),W (b),W (c)}
J(2) = {W (c)} J(3) = {W (a),W (b),W (c)}
J(4) = {W (c)} . . .

Certain facts: W (c);

possible facts: W (a),W (b).

W (a) :- E (a, b) ∧¬W (b)
W (b) :- E (b, a) ∧¬W (a)
W (b) :- E (b, c) ∧¬W (c)
W (c) :- E (c , d) ∧¬W (d)
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Discussion

Well-founded models can be computed in PTIME.

Yet, I don’t know of any system that supports it.
Maybe because of the 3-valued logic?

Next: two other semantics motivated by computation.
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Computation-Based Extensions
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Computation-Based Extensions

Datalog with inflationary fixpoint semantics.

Datalog with partial fixpoint semantics.
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Inflationary Fixpoint

Let P be a datalog¬ program, TP its ICO.

The inflationary fixpoint is ifp(P)
def
=

⋃
t≥0 Jt , where:

J0
def
= ∅, Jt+1

def
= Jt ∪ TP(Jt)

Fact

ifp(P) can be computed in PTIME in the size of the EDB I .

why?

Because J0 ⊆ J1 ⊆ · · · ⊆ (ADom(I ))k
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Partial Fixpoint

The partial fixpoint is:

pfp(P)
def
=

{
Jt0 if Jt0 = Jt0+1

∅ if Jt ̸= Jt+1,∀t

where
J0

def
= ∅, Jt+1

def
= TP(Jt)

Fact

pfp(P) can be computed in PSPACE in the size of the EDB I .

why?

each |Jt | has size polynomial in ADom(I ).

Detect non-termination using a counter.
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How To Express Negation

It’s harder than one may think!

Complement of the TC:

T (X ,Y ) :- E(X ,Y )

T (X ,Y ) :- T (X ,Z) ∧ E(Z ,X )

Answ(X ,Y ) :- V (X ) ∧ V (Y )

∧¬T (X ,Y )

ifp(P) is incorrect!

Detect the last step
[Abiteboul et al., 1995, Ex.14.4.2]

T (X ,Y ) :- E(X ,Y )

T (X ,Y ) :- T (X ,Z) ∧ E(Z ,Y )

Tprev(X ,Y ) :- T (X ,Y )

Tprev-not-last(X ,Y ) :- T (X ,Y )∧
∧T (X ′,Z ′) ∧ E(Z ′,Y ′) ∧ ¬T (X ′,Y ′)

Answ(X ,Y ) :- V (X ) ∧ V (Y ) ∧ ¬T (X ,Y )

∧Tprev(X
′,Y ′) ∧ ¬Tprev-not-last(X

′,Y ′)
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Descriptive Complexity

Datalog¬ cannot express parity, no matter which semantics we adopt.

If we have access to an order relation < then we can express parity as:2

E (X ,Y ) :- succ(X ,Z ) ∧ succ(Z ,Y )

E (X ,Y ) :- E (X ,Z ) ∧ E (Z ,Y ) // even-length distance

Even() :- R(X ) ∧min(X ) ∧ E (X ,Y ) ∧max(Y ) ∧ R(Y )

Theorem (Descriptive Complexity [Vardi, 1982, Immerman, 1986])

Datalog¬(<, ifp) expresses precisely queries in PTIME.

Datalog¬(<, pfp) expresses precisely queries in PSPACE.

2Exercise: express succ(X ,Y ), min(X ), max(Y ) using <.
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Discussion

Datalog: simple, elegant, appealing. New resurgence after a 40 years
history.

Stratified datalog¬ is a simple and practical extension.

Beyond that, it becomes questionable.

But the theory is beautiful. A famous result:

Theorem ([Abiteboul et al., 1992])

datalog¬(ifp) = datalog¬(pfp) iff PTIME=PSPACE.
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